At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem and find the value of \( A \), we need to use some properties of H.C.F (Highest Common Factor) and L.C.M (Least Common Multiple) of polynomials.
Given:
- \( \text{H.C.F} \) of \( x^3 - 1 \) and \( A \) is \( x - 1 \)
- \( \text{L.C.M} \) of \( x^3 - 1 \) and \( A \) is \( x^6 - 1 \)
We use the relationship between H.C.F and L.C.M of two expressions \( f(x) \) and \( g(x) \):
[tex]\[ \text{H.C.F}(f(x), g(x)) \cdot \text{L.C.M}(f(x), g(x)) = f(x) \cdot g(x) \][/tex]
Applying this to our problem:
[tex]\[ (x - 1) \cdot (x^6 - 1) = (x^3 - 1) \cdot A \][/tex]
First, we factorize the expressions where necessary.
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
[tex]\[ x^6 - 1 = (x^3 - 1)(x^3 + 1) = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1) \][/tex]
Given:
[tex]\[ (x - 1) \cdot (x^6 - 1) = (x^3 - 1) \cdot A \][/tex]
Substitute the factored forms:
[tex]\[ (x - 1) \left((x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)\right) = ((x - 1)(x^2 + x + 1)) \cdot A \][/tex]
[tex]\[ (x - 1)^2(x^2 + x + 1)(x + 1)(x^2 - x + 1) = (x - 1)(x^2 + x + 1) \cdot A \][/tex]
We can cancel \((x - 1)(x^2 + x + 1)\) from both sides, as they are common factors:
[tex]\[ (x - 1)(x + 1)(x^2 - x + 1) = A \][/tex]
So we need to find \( A \):
\( A = (x - 1)(x + 1)(x^2 - x + 1) \)
[tex]\[ A = (x^2 - 1)(x^2 - x + 1) \][/tex]
The given choices are:
1. \( x^3 + 1 \)
2. \( x^4 - x^3 + x - 1 \)
3. \( (x - 1)(x^2 - x + 1) \)
4. \( (x - 1)(x^2 + x + 1) \)
Let's test each choice to match our solution for \( A \).
By comparing our final expression of A with the provided options, it should be clear:
Given \( A = (x - 1)(x^2 - x + 1) \).
Therefore, the answer is option 3:
[tex]\[ (x - 1)(x^2 - x + 1) \][/tex]
The correct value of \( A \) is:
[tex]\[ \boxed{(x-1)(x^2 - x + 1)} \][/tex]
Given:
- \( \text{H.C.F} \) of \( x^3 - 1 \) and \( A \) is \( x - 1 \)
- \( \text{L.C.M} \) of \( x^3 - 1 \) and \( A \) is \( x^6 - 1 \)
We use the relationship between H.C.F and L.C.M of two expressions \( f(x) \) and \( g(x) \):
[tex]\[ \text{H.C.F}(f(x), g(x)) \cdot \text{L.C.M}(f(x), g(x)) = f(x) \cdot g(x) \][/tex]
Applying this to our problem:
[tex]\[ (x - 1) \cdot (x^6 - 1) = (x^3 - 1) \cdot A \][/tex]
First, we factorize the expressions where necessary.
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
[tex]\[ x^6 - 1 = (x^3 - 1)(x^3 + 1) = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1) \][/tex]
Given:
[tex]\[ (x - 1) \cdot (x^6 - 1) = (x^3 - 1) \cdot A \][/tex]
Substitute the factored forms:
[tex]\[ (x - 1) \left((x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)\right) = ((x - 1)(x^2 + x + 1)) \cdot A \][/tex]
[tex]\[ (x - 1)^2(x^2 + x + 1)(x + 1)(x^2 - x + 1) = (x - 1)(x^2 + x + 1) \cdot A \][/tex]
We can cancel \((x - 1)(x^2 + x + 1)\) from both sides, as they are common factors:
[tex]\[ (x - 1)(x + 1)(x^2 - x + 1) = A \][/tex]
So we need to find \( A \):
\( A = (x - 1)(x + 1)(x^2 - x + 1) \)
[tex]\[ A = (x^2 - 1)(x^2 - x + 1) \][/tex]
The given choices are:
1. \( x^3 + 1 \)
2. \( x^4 - x^3 + x - 1 \)
3. \( (x - 1)(x^2 - x + 1) \)
4. \( (x - 1)(x^2 + x + 1) \)
Let's test each choice to match our solution for \( A \).
By comparing our final expression of A with the provided options, it should be clear:
Given \( A = (x - 1)(x^2 - x + 1) \).
Therefore, the answer is option 3:
[tex]\[ (x - 1)(x^2 - x + 1) \][/tex]
The correct value of \( A \) is:
[tex]\[ \boxed{(x-1)(x^2 - x + 1)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.