At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! For the quadratic function \( f(x) = a x^2 \), we can determine key features such as the vertex and the axis of symmetry. Let's go through the steps:
Step 1: Identify the form of the quadratic function.
The given function is \( f(x) = a x^2 \), which is a standard form of a quadratic function where:
- \( a \) is a constant coefficient.
Step 2: Determine the vertex of the function.
For a quadratic function of the form \( f(x) = a x^2 \), the vertex is a critical point where the function changes direction. This standard form is symmetric about a vertical line through its vertex, and the vertex can be identified as follows:
- For \( f(x) = a x^2 \), the vertex is at the point \((0, 0)\). This is because when \( x = 0 \), the value of \( f(x) \) is also \( 0 \) (i.e., \( f(0) = a \cdot 0^2 = 0 \)).
Step 3: Identify the axis of symmetry.
The axis of symmetry for this quadratic function is a vertical line that runs through the vertex. It essentially splits the graph into two identical halves. For the function \( f(x) = a x^2 \):
- The vertex is at \( (0, 0) \), so the axis of symmetry is the line \( x = 0 \).
Summary:
- Vertex: The vertex of the function \( f(x) = a x^2 \) is \((0, 0)\).
- Axis of Symmetry: The axis of symmetry is the vertical line \( x = 0 \).
So, the answers are:
- The vertex is \( (0, 0) \).
- The axis of symmetry is [tex]\( x = 0 \)[/tex].
Step 1: Identify the form of the quadratic function.
The given function is \( f(x) = a x^2 \), which is a standard form of a quadratic function where:
- \( a \) is a constant coefficient.
Step 2: Determine the vertex of the function.
For a quadratic function of the form \( f(x) = a x^2 \), the vertex is a critical point where the function changes direction. This standard form is symmetric about a vertical line through its vertex, and the vertex can be identified as follows:
- For \( f(x) = a x^2 \), the vertex is at the point \((0, 0)\). This is because when \( x = 0 \), the value of \( f(x) \) is also \( 0 \) (i.e., \( f(0) = a \cdot 0^2 = 0 \)).
Step 3: Identify the axis of symmetry.
The axis of symmetry for this quadratic function is a vertical line that runs through the vertex. It essentially splits the graph into two identical halves. For the function \( f(x) = a x^2 \):
- The vertex is at \( (0, 0) \), so the axis of symmetry is the line \( x = 0 \).
Summary:
- Vertex: The vertex of the function \( f(x) = a x^2 \) is \((0, 0)\).
- Axis of Symmetry: The axis of symmetry is the vertical line \( x = 0 \).
So, the answers are:
- The vertex is \( (0, 0) \).
- The axis of symmetry is [tex]\( x = 0 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.