Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's examine how the gravitational force changes with distance using the gravitational force formula:
[tex]\[ F = -G \frac{m_1 m_2}{d^2} \][/tex]
Initially, the distance between the sponge and the towel is \( d_1 = 0.5 \) meters, so the gravitational force is:
[tex]\[ F_1 = -G \frac{m_1 m_2}{(0.5)^2} \][/tex]
Now, if the distance between the sponge and the towel increases to \( d_2 = 1.0 \) meters, the new gravitational force becomes:
[tex]\[ F_2 = -G \frac{m_1 m_2}{(1.0)^2} \][/tex]
We need to understand how \( F_2 \) compares to \( F_1 \). To do this, we can express \( F_2 \) in terms of \( F_1 \):
First, note that:
[tex]\[ (1.0)^2 = 1 \][/tex]
and
[tex]\[ (0.5)^2 = 0.25 \][/tex]
So, we have:
[tex]\[ F_2 = -G \frac{m_1 m_2}{1} \][/tex]
and
[tex]\[ F_1 = -G \frac{m_1 m_2}{0.25} = 4 \cdot -G \frac{m_1 m_2}{1} = 4 \cdot F_2 \][/tex]
Thus, we can see:
[tex]\[ F_2 = \frac{F_1}{4} \][/tex]
This means that when the distance between the sponge and the towel is doubled from 0.5 meters to 1.0 meters, the gravitational force becomes one-fourth as much.
So, the correct answer is:
a fourth as much
[tex]\[ F = -G \frac{m_1 m_2}{d^2} \][/tex]
Initially, the distance between the sponge and the towel is \( d_1 = 0.5 \) meters, so the gravitational force is:
[tex]\[ F_1 = -G \frac{m_1 m_2}{(0.5)^2} \][/tex]
Now, if the distance between the sponge and the towel increases to \( d_2 = 1.0 \) meters, the new gravitational force becomes:
[tex]\[ F_2 = -G \frac{m_1 m_2}{(1.0)^2} \][/tex]
We need to understand how \( F_2 \) compares to \( F_1 \). To do this, we can express \( F_2 \) in terms of \( F_1 \):
First, note that:
[tex]\[ (1.0)^2 = 1 \][/tex]
and
[tex]\[ (0.5)^2 = 0.25 \][/tex]
So, we have:
[tex]\[ F_2 = -G \frac{m_1 m_2}{1} \][/tex]
and
[tex]\[ F_1 = -G \frac{m_1 m_2}{0.25} = 4 \cdot -G \frac{m_1 m_2}{1} = 4 \cdot F_2 \][/tex]
Thus, we can see:
[tex]\[ F_2 = \frac{F_1}{4} \][/tex]
This means that when the distance between the sponge and the towel is doubled from 0.5 meters to 1.0 meters, the gravitational force becomes one-fourth as much.
So, the correct answer is:
a fourth as much
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.