Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's go through the steps to simplify the expression \(\sqrt[5]{4} \cdot \sqrt{2}\).
### Step 1: Rewrite in terms of rational exponents
To start, we will rewrite the radicals in terms of rational exponents:
[tex]\[ \sqrt[5]{4} = 4^{\frac{1}{5}} \][/tex]
[tex]\[ \sqrt{2} = 2^{\frac{1}{2}} \][/tex]
So the expression \(\sqrt[5]{4} \cdot \sqrt{2}\) can be written as:
[tex]\[ 4^{\frac{1}{5}} \cdot 2^{\frac{1}{2}} \][/tex]
### Step 2: Break down the base 4 in terms of base 2
Next, we rewrite \(4\) in terms of \(2\) since \(4\) is \(2^2\):
[tex]\[ 4^{\frac{1}{5}} = (2^2)^{\frac{1}{5}} = 2^{2 \cdot \frac{1}{5}} = 2^{\frac{2}{5}} \][/tex]
So the expression now is:
[tex]\[ 2^{\frac{2}{5}} \cdot 2^{\frac{1}{2}} \][/tex]
### Step 3: Use properties of exponents to combine the terms
With a common base, we can add the exponents:
[tex]\[ 2^{\frac{2}{5}} \cdot 2^{\frac{1}{2}} = 2^{\frac{2}{5} + \frac{1}{2}} \][/tex]
### Step 4: Find a common denominator and add the exponents
To add \(\frac{2}{5}\) and \(\frac{1}{2}\), we find a common denominator, which is 10:
[tex]\[ \frac{2}{5} = \frac{2 \cdot 2}{5 \cdot 2} = \frac{4}{10} \][/tex]
[tex]\[ \frac{1}{2} = \frac{1 \cdot 5}{2 \cdot 5} = \frac{5}{10} \][/tex]
Now add the fractions:
[tex]\[ \frac{4}{10} + \frac{5}{10} = \frac{4 + 5}{10} = \frac{9}{10} \][/tex]
So we get:
[tex]\[ 2^{\frac{9}{10}} \][/tex]
### Step 5: Evaluate the result numerically
Finally, \(2^{\frac{9}{10}}\) evaluates to approximately \(2.5198420997897464\).
### Summary:
Thus, the simplified form of \(\sqrt[5]{4} \cdot \sqrt{2}\) using rational exponents and properties of exponents is \(2^{\frac{9}{10}}\), which numerically evaluates to:
[tex]\[ 2.5198420997897464 \][/tex]
The intermediate steps are also confirmed:
- \(4^{\frac{1}{6}} \approx 1.2599210498948732\)
- \(2^{\frac{1}{1}} = 2.0\)
So, the expression can be simplified and the resulting value is [tex]\( \boxed{2.5198420997897464} \)[/tex].
### Step 1: Rewrite in terms of rational exponents
To start, we will rewrite the radicals in terms of rational exponents:
[tex]\[ \sqrt[5]{4} = 4^{\frac{1}{5}} \][/tex]
[tex]\[ \sqrt{2} = 2^{\frac{1}{2}} \][/tex]
So the expression \(\sqrt[5]{4} \cdot \sqrt{2}\) can be written as:
[tex]\[ 4^{\frac{1}{5}} \cdot 2^{\frac{1}{2}} \][/tex]
### Step 2: Break down the base 4 in terms of base 2
Next, we rewrite \(4\) in terms of \(2\) since \(4\) is \(2^2\):
[tex]\[ 4^{\frac{1}{5}} = (2^2)^{\frac{1}{5}} = 2^{2 \cdot \frac{1}{5}} = 2^{\frac{2}{5}} \][/tex]
So the expression now is:
[tex]\[ 2^{\frac{2}{5}} \cdot 2^{\frac{1}{2}} \][/tex]
### Step 3: Use properties of exponents to combine the terms
With a common base, we can add the exponents:
[tex]\[ 2^{\frac{2}{5}} \cdot 2^{\frac{1}{2}} = 2^{\frac{2}{5} + \frac{1}{2}} \][/tex]
### Step 4: Find a common denominator and add the exponents
To add \(\frac{2}{5}\) and \(\frac{1}{2}\), we find a common denominator, which is 10:
[tex]\[ \frac{2}{5} = \frac{2 \cdot 2}{5 \cdot 2} = \frac{4}{10} \][/tex]
[tex]\[ \frac{1}{2} = \frac{1 \cdot 5}{2 \cdot 5} = \frac{5}{10} \][/tex]
Now add the fractions:
[tex]\[ \frac{4}{10} + \frac{5}{10} = \frac{4 + 5}{10} = \frac{9}{10} \][/tex]
So we get:
[tex]\[ 2^{\frac{9}{10}} \][/tex]
### Step 5: Evaluate the result numerically
Finally, \(2^{\frac{9}{10}}\) evaluates to approximately \(2.5198420997897464\).
### Summary:
Thus, the simplified form of \(\sqrt[5]{4} \cdot \sqrt{2}\) using rational exponents and properties of exponents is \(2^{\frac{9}{10}}\), which numerically evaluates to:
[tex]\[ 2.5198420997897464 \][/tex]
The intermediate steps are also confirmed:
- \(4^{\frac{1}{6}} \approx 1.2599210498948732\)
- \(2^{\frac{1}{1}} = 2.0\)
So, the expression can be simplified and the resulting value is [tex]\( \boxed{2.5198420997897464} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.