Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step:
### Part (a)
Let \( Z \) denote the number of trials in which the sum of the numbers on the two dice is 3.
1. Probability of Success (p):
- When rolling two fair dice, each of which has 6 faces, there are a total of \( 6 \times 6 = 36 \) possible outcomes.
- For the sum of the numbers to be 3, the favorable outcomes are:
- (1,2) and (2,1)
- Therefore, there are 2 favorable outcomes.
- Thus, the probability \( p \) of getting a sum of 3 in one roll is:
[tex]\[ p = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{2}{36} = \frac{1}{18} \][/tex]
2. Variance of \( Z \):
- The number of trials \( n = 10 \).
- The variance of \( Z \), where \( Z \) is a binomial random variable with parameters \( n \) and \( p \), is given by:
[tex]\[ \text{Var}(Z) = n \cdot p \cdot (1 - p) \][/tex]
- Substituting the values:
[tex]\[ \text{Var}(Z) = 10 \cdot \frac{1}{18} \cdot \left(1 - \frac{1}{18}\right) = 10 \cdot \frac{1}{18} \cdot \frac{17}{18} = \frac{170}{324} \approx 0.5247 \][/tex]
So, the variance of \( Z \) is approximately \( 0.5247 \).
### Part (b)
Now, we need to find the probability that out of 10 trials, exactly 5 trials have a sum of 7.
1. Probability of Success (p) for a Sum of 7:
- We follow a similar approach as in part (a).
- The favorable outcomes for a sum of 7 are:
- (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Hence, there are 6 favorable outcomes.
- Thus, the probability \( p \) of getting a sum of 7 in one roll is:
[tex]\[ p = \frac{6}{36} = \frac{1}{6} \][/tex]
2. Binomial Probability:
- We need the probability of having exactly 5 successes (trials with a sum of 7) in 10 trials.
- This is a binomial probability which is given by:
[tex]\[ P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} \][/tex]
where \( \binom{n}{k} \) is the binomial coefficient, calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k! \cdot (n - k)!} \][/tex]
and \( k = 5 \), \( n = 10 \), \( p = \frac{1}{6} \).
3. Calculating the Probability:
- Let's plug the values into the formula:
[tex]\[ P(X = 5) = \binom{10}{5} \cdot \left(\frac{1}{6}\right)^5 \cdot \left(\frac{5}{6}\right)^5 \][/tex]
- Simplifying the expression gives us:
[tex]\[ \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \][/tex]
[tex]\[ P(X = 5) = 252 \cdot \left(\frac{1}{6}\right)^5 \cdot \left(\frac{5}{6}\right)^5 \approx 0.0130 \][/tex]
So, the probability that exactly 5 out of 10 trials result in a sum of 7 is approximately \( 0.0130 \).
### Final Answers:
(a) The variance of \( Z \) is approximately \( 0.5247 \).
(b) The probability that there are exactly 5 trials, each of which has a sum of 7, is approximately [tex]\( 0.0130 \)[/tex].
### Part (a)
Let \( Z \) denote the number of trials in which the sum of the numbers on the two dice is 3.
1. Probability of Success (p):
- When rolling two fair dice, each of which has 6 faces, there are a total of \( 6 \times 6 = 36 \) possible outcomes.
- For the sum of the numbers to be 3, the favorable outcomes are:
- (1,2) and (2,1)
- Therefore, there are 2 favorable outcomes.
- Thus, the probability \( p \) of getting a sum of 3 in one roll is:
[tex]\[ p = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{2}{36} = \frac{1}{18} \][/tex]
2. Variance of \( Z \):
- The number of trials \( n = 10 \).
- The variance of \( Z \), where \( Z \) is a binomial random variable with parameters \( n \) and \( p \), is given by:
[tex]\[ \text{Var}(Z) = n \cdot p \cdot (1 - p) \][/tex]
- Substituting the values:
[tex]\[ \text{Var}(Z) = 10 \cdot \frac{1}{18} \cdot \left(1 - \frac{1}{18}\right) = 10 \cdot \frac{1}{18} \cdot \frac{17}{18} = \frac{170}{324} \approx 0.5247 \][/tex]
So, the variance of \( Z \) is approximately \( 0.5247 \).
### Part (b)
Now, we need to find the probability that out of 10 trials, exactly 5 trials have a sum of 7.
1. Probability of Success (p) for a Sum of 7:
- We follow a similar approach as in part (a).
- The favorable outcomes for a sum of 7 are:
- (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Hence, there are 6 favorable outcomes.
- Thus, the probability \( p \) of getting a sum of 7 in one roll is:
[tex]\[ p = \frac{6}{36} = \frac{1}{6} \][/tex]
2. Binomial Probability:
- We need the probability of having exactly 5 successes (trials with a sum of 7) in 10 trials.
- This is a binomial probability which is given by:
[tex]\[ P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} \][/tex]
where \( \binom{n}{k} \) is the binomial coefficient, calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k! \cdot (n - k)!} \][/tex]
and \( k = 5 \), \( n = 10 \), \( p = \frac{1}{6} \).
3. Calculating the Probability:
- Let's plug the values into the formula:
[tex]\[ P(X = 5) = \binom{10}{5} \cdot \left(\frac{1}{6}\right)^5 \cdot \left(\frac{5}{6}\right)^5 \][/tex]
- Simplifying the expression gives us:
[tex]\[ \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \][/tex]
[tex]\[ P(X = 5) = 252 \cdot \left(\frac{1}{6}\right)^5 \cdot \left(\frac{5}{6}\right)^5 \approx 0.0130 \][/tex]
So, the probability that exactly 5 out of 10 trials result in a sum of 7 is approximately \( 0.0130 \).
### Final Answers:
(a) The variance of \( Z \) is approximately \( 0.5247 \).
(b) The probability that there are exactly 5 trials, each of which has a sum of 7, is approximately [tex]\( 0.0130 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.