At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which set has more gravitational force energy, we need to calculate the gravitational force for each set using the given formula:
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
First, let's list the known values for both sets:
For Set 1:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
For Set 2:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
Given that the gravitational constant \( G \) is the same for both sets, and that the masses and distances are identical in both sets, we can infer that the gravitational forces will be computed from identical values.
Now, since the equation for the gravitational force depends only on the masses and the distance between them, we need to plug these values into the formula to determine the force for each set. Despite the detailed calculations being unnecessary because of the identical values, it’s clear that:
[tex]\[ F_{\text{Set 1}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
[tex]\[ F_{\text{Set 2}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
Since both \( F_{\text{Set 1}} \) and \( F_{\text{Set 2}} \) have identical expressions, we can conclude:
[tex]\[ F_{\text{Set 1}} = F_{\text{Set 2}} \][/tex]
Therefore, the correct answer is:
- The sets have an equal amount of gravitational force energy.
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
First, let's list the known values for both sets:
For Set 1:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
For Set 2:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
Given that the gravitational constant \( G \) is the same for both sets, and that the masses and distances are identical in both sets, we can infer that the gravitational forces will be computed from identical values.
Now, since the equation for the gravitational force depends only on the masses and the distance between them, we need to plug these values into the formula to determine the force for each set. Despite the detailed calculations being unnecessary because of the identical values, it’s clear that:
[tex]\[ F_{\text{Set 1}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
[tex]\[ F_{\text{Set 2}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
Since both \( F_{\text{Set 1}} \) and \( F_{\text{Set 2}} \) have identical expressions, we can conclude:
[tex]\[ F_{\text{Set 1}} = F_{\text{Set 2}} \][/tex]
Therefore, the correct answer is:
- The sets have an equal amount of gravitational force energy.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.