Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which set has more gravitational force energy, we need to calculate the gravitational force for each set using the given formula:
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
First, let's list the known values for both sets:
For Set 1:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
For Set 2:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
Given that the gravitational constant \( G \) is the same for both sets, and that the masses and distances are identical in both sets, we can infer that the gravitational forces will be computed from identical values.
Now, since the equation for the gravitational force depends only on the masses and the distance between them, we need to plug these values into the formula to determine the force for each set. Despite the detailed calculations being unnecessary because of the identical values, it’s clear that:
[tex]\[ F_{\text{Set 1}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
[tex]\[ F_{\text{Set 2}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
Since both \( F_{\text{Set 1}} \) and \( F_{\text{Set 2}} \) have identical expressions, we can conclude:
[tex]\[ F_{\text{Set 1}} = F_{\text{Set 2}} \][/tex]
Therefore, the correct answer is:
- The sets have an equal amount of gravitational force energy.
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
First, let's list the known values for both sets:
For Set 1:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
For Set 2:
- \( m_1 = 4300 \, \text{kg} \)
- \( m_2 = 6000 \, \text{kg} \)
- \( d = 40 \, \text{m} \)
Given that the gravitational constant \( G \) is the same for both sets, and that the masses and distances are identical in both sets, we can infer that the gravitational forces will be computed from identical values.
Now, since the equation for the gravitational force depends only on the masses and the distance between them, we need to plug these values into the formula to determine the force for each set. Despite the detailed calculations being unnecessary because of the identical values, it’s clear that:
[tex]\[ F_{\text{Set 1}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
[tex]\[ F_{\text{Set 2}} = \frac{-G \left(4300 \times 6000\right)}{40^2} \][/tex]
Since both \( F_{\text{Set 1}} \) and \( F_{\text{Set 2}} \) have identical expressions, we can conclude:
[tex]\[ F_{\text{Set 1}} = F_{\text{Set 2}} \][/tex]
Therefore, the correct answer is:
- The sets have an equal amount of gravitational force energy.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.