Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's determine which set has the greater gravitational force using the provided gravitational force formula:
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
where:
- \( G \) (the gravitational constant) is approximately \( 6.67430 \times 10^{-11} \) m³ kg⁻¹ s⁻².
- \( m_1 \) and \( m_2 \) are the masses in kilograms.
- \( d \) is the distance between the masses in meters.
### For Set 1:
- \( m_1 = 500 \) kg
- \( m_2 = 750 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 1}} = \frac{-G \times (500 \times 750)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-2.780958333333333 \times 10^{-6}\) N.
### For Set 2:
- \( m_1 = 500 \) kg
- \( m_2 = 1000 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 2}} = \frac{-G \times (500 \times 1000)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-3.707944444444444 \times 10^{-6}\) N.
### Comparing the Forces:
The gravitational force for Set 1 is \(-2.780958333333333 \times 10^{-6}\) N, and the gravitational force for Set 2 is \(-3.707944444444444 \times 10^{-6}\) N.
Since \(-3.707944444444444 \times 10^{-6}\) N (Set 2) is more negative (greater in magnitude) than \(-2.780958333333333 \times 10^{-6}\) N (Set 1), the gravitational force in Set 2 is stronger than that in Set 1.
### Conclusion:
Set 2 has more gravitational force energy.
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
where:
- \( G \) (the gravitational constant) is approximately \( 6.67430 \times 10^{-11} \) m³ kg⁻¹ s⁻².
- \( m_1 \) and \( m_2 \) are the masses in kilograms.
- \( d \) is the distance between the masses in meters.
### For Set 1:
- \( m_1 = 500 \) kg
- \( m_2 = 750 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 1}} = \frac{-G \times (500 \times 750)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-2.780958333333333 \times 10^{-6}\) N.
### For Set 2:
- \( m_1 = 500 \) kg
- \( m_2 = 1000 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 2}} = \frac{-G \times (500 \times 1000)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-3.707944444444444 \times 10^{-6}\) N.
### Comparing the Forces:
The gravitational force for Set 1 is \(-2.780958333333333 \times 10^{-6}\) N, and the gravitational force for Set 2 is \(-3.707944444444444 \times 10^{-6}\) N.
Since \(-3.707944444444444 \times 10^{-6}\) N (Set 2) is more negative (greater in magnitude) than \(-2.780958333333333 \times 10^{-6}\) N (Set 1), the gravitational force in Set 2 is stronger than that in Set 1.
### Conclusion:
Set 2 has more gravitational force energy.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.