Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's determine which set has the greater gravitational force using the provided gravitational force formula:
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
where:
- \( G \) (the gravitational constant) is approximately \( 6.67430 \times 10^{-11} \) m³ kg⁻¹ s⁻².
- \( m_1 \) and \( m_2 \) are the masses in kilograms.
- \( d \) is the distance between the masses in meters.
### For Set 1:
- \( m_1 = 500 \) kg
- \( m_2 = 750 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 1}} = \frac{-G \times (500 \times 750)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-2.780958333333333 \times 10^{-6}\) N.
### For Set 2:
- \( m_1 = 500 \) kg
- \( m_2 = 1000 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 2}} = \frac{-G \times (500 \times 1000)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-3.707944444444444 \times 10^{-6}\) N.
### Comparing the Forces:
The gravitational force for Set 1 is \(-2.780958333333333 \times 10^{-6}\) N, and the gravitational force for Set 2 is \(-3.707944444444444 \times 10^{-6}\) N.
Since \(-3.707944444444444 \times 10^{-6}\) N (Set 2) is more negative (greater in magnitude) than \(-2.780958333333333 \times 10^{-6}\) N (Set 1), the gravitational force in Set 2 is stronger than that in Set 1.
### Conclusion:
Set 2 has more gravitational force energy.
[tex]\[ F = \frac{-G \left(m_1 m_2\right)}{d^2} \][/tex]
where:
- \( G \) (the gravitational constant) is approximately \( 6.67430 \times 10^{-11} \) m³ kg⁻¹ s⁻².
- \( m_1 \) and \( m_2 \) are the masses in kilograms.
- \( d \) is the distance between the masses in meters.
### For Set 1:
- \( m_1 = 500 \) kg
- \( m_2 = 750 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 1}} = \frac{-G \times (500 \times 750)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-2.780958333333333 \times 10^{-6}\) N.
### For Set 2:
- \( m_1 = 500 \) kg
- \( m_2 = 1000 \) kg
- \( d = 3 \) meters
Plugging these values into the formula:
[tex]\[ F_{\text{Set 2}} = \frac{-G \times (500 \times 1000)}{3^2} \][/tex]
This gives a gravitational force of approximately \(-3.707944444444444 \times 10^{-6}\) N.
### Comparing the Forces:
The gravitational force for Set 1 is \(-2.780958333333333 \times 10^{-6}\) N, and the gravitational force for Set 2 is \(-3.707944444444444 \times 10^{-6}\) N.
Since \(-3.707944444444444 \times 10^{-6}\) N (Set 2) is more negative (greater in magnitude) than \(-2.780958333333333 \times 10^{-6}\) N (Set 1), the gravitational force in Set 2 is stronger than that in Set 1.
### Conclusion:
Set 2 has more gravitational force energy.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.