Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze how the graph of function \(g(x) = -5 \ln x\) compares with the graph of function \(f(x) = \ln x\).
1. Vertical Asymptote:
Both functions \(f(x)\) and \(g(x)\) involve the natural logarithm \(\ln x\). The natural logarithm function \(\ln x\) has a vertical asymptote at \(x = 0\) because it approaches \(-\infty\) as \(x\) gets closer to 0 from the right. Since \(g(x)\) is simply a vertically scaled and reflected version of \(f(x)\), it also has a vertical asymptote at \(x = 0\).
Claim: True.
2. Domain:
The natural logarithm function \(f(x) = \ln x\) is defined only for \(x > 0\). Therefore, the domain of \(f(x)\) is \(\{x \mid x > 0\}\). Multiplying the logarithm by a constant (such as \(-5\) to get \(g(x) = -5 \ln x\)) does not alter the domain. Thus, the domain of \(g(x)\) is also \(\{x \mid x > 0\}\), not \(\{x \mid -5 < x < \infty\}\).
Claim: False.
3. Reflection and Vertical Stretch:
To obtain \(g(x)\) from \(f(x)\), we multiply \(f(x)\) by \(-5\). This reflects the graph of \(f(x)\) over the \(x\)-axis (because of the negative sign) and vertically stretches it by a factor of 5 (because of the coefficient 5).
Claim: True.
4. Behavior as \(x\) Increases:
The function \(f(x) = \ln x\) is an increasing function, meaning it increases as \(x\) increases. When you multiply by \(-5\), the function \(g(x) = -5 \ln x\) takes the increasing behavior of \(f(x)\) and turns it into decreasing behavior (the reflection effect). Thus, \(g(x)\) decreases as \(x\) increases.
Claim: True.
5. Y-intercept:
For a function to have a \(y\)-intercept, it must be defined at \(x = 0\). However, \(\ln x\) is not defined for \(x = 0\), and neither is \(-5 \ln x\). Therefore, neither function has a \(y\)-intercept.
Claim: False.
In summary, the correct claims are:
- The graphs of both functions have a vertical asymptote of \(x = 0\).
- The graph of function \(g\) is the graph of function \(f\) reflected over the \(x\)-axis and vertically stretched by a factor of 5.
- Unlike the graph of function [tex]\(f\)[/tex], the graph of function [tex]\(g\)[/tex] decreases as [tex]\(x\)[/tex] increases.
1. Vertical Asymptote:
Both functions \(f(x)\) and \(g(x)\) involve the natural logarithm \(\ln x\). The natural logarithm function \(\ln x\) has a vertical asymptote at \(x = 0\) because it approaches \(-\infty\) as \(x\) gets closer to 0 from the right. Since \(g(x)\) is simply a vertically scaled and reflected version of \(f(x)\), it also has a vertical asymptote at \(x = 0\).
Claim: True.
2. Domain:
The natural logarithm function \(f(x) = \ln x\) is defined only for \(x > 0\). Therefore, the domain of \(f(x)\) is \(\{x \mid x > 0\}\). Multiplying the logarithm by a constant (such as \(-5\) to get \(g(x) = -5 \ln x\)) does not alter the domain. Thus, the domain of \(g(x)\) is also \(\{x \mid x > 0\}\), not \(\{x \mid -5 < x < \infty\}\).
Claim: False.
3. Reflection and Vertical Stretch:
To obtain \(g(x)\) from \(f(x)\), we multiply \(f(x)\) by \(-5\). This reflects the graph of \(f(x)\) over the \(x\)-axis (because of the negative sign) and vertically stretches it by a factor of 5 (because of the coefficient 5).
Claim: True.
4. Behavior as \(x\) Increases:
The function \(f(x) = \ln x\) is an increasing function, meaning it increases as \(x\) increases. When you multiply by \(-5\), the function \(g(x) = -5 \ln x\) takes the increasing behavior of \(f(x)\) and turns it into decreasing behavior (the reflection effect). Thus, \(g(x)\) decreases as \(x\) increases.
Claim: True.
5. Y-intercept:
For a function to have a \(y\)-intercept, it must be defined at \(x = 0\). However, \(\ln x\) is not defined for \(x = 0\), and neither is \(-5 \ln x\). Therefore, neither function has a \(y\)-intercept.
Claim: False.
In summary, the correct claims are:
- The graphs of both functions have a vertical asymptote of \(x = 0\).
- The graph of function \(g\) is the graph of function \(f\) reflected over the \(x\)-axis and vertically stretched by a factor of 5.
- Unlike the graph of function [tex]\(f\)[/tex], the graph of function [tex]\(g\)[/tex] decreases as [tex]\(x\)[/tex] increases.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.