At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Type the correct answer in each box. Use numerals instead of words.

Consider the function [tex]$h$[/tex].

[tex]\[ h(x)=\left\{\begin{array}{ll}
3x - 4, & x \ \textless \ 0 \\
2x^2 - 3x + 10, & 0 \leq x \ \textless \ 4 \\
2^x, & x \geq 4
\end{array}\right. \][/tex]

What are the values of the function when [tex]$x = 0$[/tex] and when [tex]$x = 4$[/tex]?

[tex]\[
\begin{array}{l}
h(0) = \square \\
h(4) = \square
\end{array}
\][/tex]

Reset


Sagot :

Let's determine the values of the function \( h \) at \( x = 0 \) and \( x = 4 \) by analyzing the piecewise function and plugging these values directly into the appropriate pieces.

For \( x = 0 \):
The function \( h \) is defined as \( h(x) = 2x^2 - 3x + 10 \) for \( 0 \leq x < 4 \). Therefore, we can substitute \( x = 0 \) into this expression:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 = 0 - 0 + 10 = 10 \][/tex]

So, \( h(0) = 10 \).

For \( x = 4 \):
The function \( h \) is defined as \( h(x) = 2^x \) for \( x \geq 4 \). Therefore, we can substitute \( x = 4 \) into this expression:
[tex]\[ h(4) = 2^4 = 16 \][/tex]

So, \( h(4) = 16 \).

Thus, the values of the function are:
[tex]\[ h(0) = 10 \][/tex]
[tex]\[ h(4) = 16 \][/tex]