Answered

Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Question 3 (3.0 points)

The joint probability density function of two random variables [tex]X[/tex] and [tex]Y[/tex] is given by:

[tex]\[
f_{X, Y}(x, y)=\begin{cases}
k(x-y), & \text{if } 0\ \textless \ y\ \textless \ x\ \textless \ 2 \\
0, & \text{otherwise}
\end{cases}
\][/tex]

(a) Find [tex]k[/tex].

(b) Find [tex]P(\max \{X, Y\} \leq 1)[/tex].

(c) Find [tex]\widehat{x}_M(y)[/tex], the minimum mean square error estimate of [tex]X[/tex] given [tex]Y=y[/tex], [tex]0\ \textless \ y\ \textless \ 2[/tex].


Sagot :

Let's address each part of the question step by step.

### Part (a): Find \( k \).
To find the constant \( k \), we must use the fact that the total probability over the entire range of the joint probability density function (pdf) must equal 1. This means integrating the given function over the specified range.

The joint pdf is \( f_{X,Y}(x,y) = k(x-y) \) for \( 0 < y < x < 2 \).

1. The integration bounds for \( x \) are from \( y \) to 2.
2. The integration bounds for \( y \) are from 0 to 2.

So, we need to solve:

[tex]\[ \int_{0}^{2} \int_{y}^{2} k(x-y) \, dx \, dy = 1 \][/tex]

First, integrate with respect to \( x \):

[tex]\[ \int_{0}^{2} \left[ \int_{y}^{2} k(x-y) \, dx \right] dy \][/tex]

[tex]\[ = \int_{0}^{2} \left[ k \int_{y}^{2} (x-y) \, dx \right] dy \][/tex]

[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right) \right] dy \][/tex]

Evaluating the inner integral:

[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(2-y)^2}{2} - 0 \right) \right] dy \][/tex]

[tex]\[ = \int_{0}^{2} k \frac{(2-y)^2}{2} \, dy \][/tex]

Next, simplify and integrate with respect to \( y \):

[tex]\[ = k \int_{0}^{2} \frac{(2-y)^2}{2} \, dy \][/tex]

[tex]\[ = k \frac{1}{2} \int_{0}^{2} (4 - 4y + y^2) \, dy \][/tex]

[tex]\[ = k \frac{1}{2} \left[ 4y - 2y^2 + \frac{y^3}{3} \Bigg|_{0}^{2} \right] \][/tex]

Evaluating this:

[tex]\[ = k \frac{1}{2} \left[ (8 - 8 + \frac{8}{3}) - ( 0 ) \right] \][/tex]

[tex]\[ = k \frac{1}{2} \cdot \frac{8}{3} \][/tex]

[tex]\[ = \frac{4k}{3} \][/tex]

Set this result equal to 1:

[tex]\[ \frac{4k}{3} = 1 \][/tex]

Solving for \( k \):

[tex]\[ k = \frac{3}{4} \][/tex]

### Part (b): Find \( P(\max \{X, Y\} \leq 1) \).
The event \(\{ \max \{X, Y\} \leq 1 \}\) indicates that both \( X \) and \( Y \) must be less than or equal to 1.

The range for the integration is \(0 < y < x < 1 \):

[tex]\[ P(\max\{X, Y\} \leq 1) = \int_{0}^{1} \int_{y}^{1} k(x-y) \, dx \, dy \][/tex]

Using \( k = \frac{3}{4} \):

[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \int_{y}^{1} (x-y) \, dx \right] dy \][/tex]

Integrating with respect to \( x \):

[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{1} \right] dy \][/tex]

[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(1-y)^2}{2} \right] dy \][/tex]

[tex]\[ = \frac{3}{8} \int_{0}^{1} (1-y)^2 \, dy \][/tex]

[tex]\[ = \frac{3}{8} \left[ \frac{(1-y)^3}{3} \Bigg|_{0}^{1} \right] \][/tex]

[tex]\[ = \frac{3}{8} \cdot \frac{1}{3} \][/tex]

[tex]\[ = \frac{1}{8} \][/tex]

### Part (c): Find \(\widehat{x}_M(y)\), the minimum mean square error estimate of \( X \) given \( Y=y \), \( 0
The conditional expectation of \( X \) given \( Y = y \) is:

[tex]\[ \widehat{x}_M(y) = E[X|Y=y] \][/tex]

This can be found by:

[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x f_{X|Y}(x|y) \, dx}{\int_{y}^{2} f_{X|Y}(x|y) \, dx} \][/tex]

Given \( f_{X,Y}(x,y) = \frac{3}{4}(x-y) \):

The conditional pdf \( f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \):

First, find the marginal pdf of \( Y \):

[tex]\[ f_Y(y) = \int_{y}^{2} \frac{3}{4}(x-y) \, dx \][/tex]

[tex]\[ = \frac{3}{4} \int_{y}^{2} (x-y) \, dx \][/tex]

[tex]\[ = \frac{3}{4} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right] \][/tex]

[tex]\[ = \frac{3}{4} \left[ \frac{(2-y)^2}{2} - 0 \right] \][/tex]

[tex]\[ = \frac{3}{8} (2-y)^2 \][/tex]

Now, calculate the conditional expectation:

[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{f_Y(y)} \][/tex]

[tex]\[ = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]

Simplify the numerator:

[tex]\[ = \frac{\int_{y}^{2} \frac{3}{4}x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]

[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]

[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} (x^2 - xy) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]

[tex]\[ = \frac{\frac{3}{4} \left[ \frac{x^3}{3} - \frac{xy^2}{2} \Bigg|_{y}^{2} \right]}{\frac{3}{8}(2-y)^2} \][/tex]

Evaluating the integral at the limits:

[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y - 0 \right]}{\frac{3}{8}(2-y)^2} \][/tex]

[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y \right]}{\frac{3}{8}(2-y)^2} \][/tex]

[tex]\[ = \frac{6 - 3y}{(2-y)^2} \][/tex]

Thus, \(\widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2}\).

So, the final answers are:

(a) \( k = \frac{3}{4} \)

(b) \( P(\max \{X, Y\} \leq 1) = \frac{1}{8} \)

(c) [tex]\( \widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2} \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.