Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's address each part of the question step by step.
### Part (a): Find \( k \).
To find the constant \( k \), we must use the fact that the total probability over the entire range of the joint probability density function (pdf) must equal 1. This means integrating the given function over the specified range.
The joint pdf is \( f_{X,Y}(x,y) = k(x-y) \) for \( 0 < y < x < 2 \).
1. The integration bounds for \( x \) are from \( y \) to 2.
2. The integration bounds for \( y \) are from 0 to 2.
So, we need to solve:
[tex]\[ \int_{0}^{2} \int_{y}^{2} k(x-y) \, dx \, dy = 1 \][/tex]
First, integrate with respect to \( x \):
[tex]\[ \int_{0}^{2} \left[ \int_{y}^{2} k(x-y) \, dx \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} \left[ k \int_{y}^{2} (x-y) \, dx \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right) \right] dy \][/tex]
Evaluating the inner integral:
[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(2-y)^2}{2} - 0 \right) \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} k \frac{(2-y)^2}{2} \, dy \][/tex]
Next, simplify and integrate with respect to \( y \):
[tex]\[ = k \int_{0}^{2} \frac{(2-y)^2}{2} \, dy \][/tex]
[tex]\[ = k \frac{1}{2} \int_{0}^{2} (4 - 4y + y^2) \, dy \][/tex]
[tex]\[ = k \frac{1}{2} \left[ 4y - 2y^2 + \frac{y^3}{3} \Bigg|_{0}^{2} \right] \][/tex]
Evaluating this:
[tex]\[ = k \frac{1}{2} \left[ (8 - 8 + \frac{8}{3}) - ( 0 ) \right] \][/tex]
[tex]\[ = k \frac{1}{2} \cdot \frac{8}{3} \][/tex]
[tex]\[ = \frac{4k}{3} \][/tex]
Set this result equal to 1:
[tex]\[ \frac{4k}{3} = 1 \][/tex]
Solving for \( k \):
[tex]\[ k = \frac{3}{4} \][/tex]
### Part (b): Find \( P(\max \{X, Y\} \leq 1) \).
The event \(\{ \max \{X, Y\} \leq 1 \}\) indicates that both \( X \) and \( Y \) must be less than or equal to 1.
The range for the integration is \(0 < y < x < 1 \):
[tex]\[ P(\max\{X, Y\} \leq 1) = \int_{0}^{1} \int_{y}^{1} k(x-y) \, dx \, dy \][/tex]
Using \( k = \frac{3}{4} \):
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \int_{y}^{1} (x-y) \, dx \right] dy \][/tex]
Integrating with respect to \( x \):
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{1} \right] dy \][/tex]
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(1-y)^2}{2} \right] dy \][/tex]
[tex]\[ = \frac{3}{8} \int_{0}^{1} (1-y)^2 \, dy \][/tex]
[tex]\[ = \frac{3}{8} \left[ \frac{(1-y)^3}{3} \Bigg|_{0}^{1} \right] \][/tex]
[tex]\[ = \frac{3}{8} \cdot \frac{1}{3} \][/tex]
[tex]\[ = \frac{1}{8} \][/tex]
### Part (c): Find \(\widehat{x}_M(y)\), the minimum mean square error estimate of \( X \) given \( Y=y \), \( 0
The conditional expectation of \( X \) given \( Y = y \) is:
[tex]\[ \widehat{x}_M(y) = E[X|Y=y] \][/tex]
This can be found by:
[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x f_{X|Y}(x|y) \, dx}{\int_{y}^{2} f_{X|Y}(x|y) \, dx} \][/tex]
Given \( f_{X,Y}(x,y) = \frac{3}{4}(x-y) \):
The conditional pdf \( f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \):
First, find the marginal pdf of \( Y \):
[tex]\[ f_Y(y) = \int_{y}^{2} \frac{3}{4}(x-y) \, dx \][/tex]
[tex]\[ = \frac{3}{4} \int_{y}^{2} (x-y) \, dx \][/tex]
[tex]\[ = \frac{3}{4} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right] \][/tex]
[tex]\[ = \frac{3}{4} \left[ \frac{(2-y)^2}{2} - 0 \right] \][/tex]
[tex]\[ = \frac{3}{8} (2-y)^2 \][/tex]
Now, calculate the conditional expectation:
[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{f_Y(y)} \][/tex]
[tex]\[ = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
Simplify the numerator:
[tex]\[ = \frac{\int_{y}^{2} \frac{3}{4}x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} (x^2 - xy) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{x^3}{3} - \frac{xy^2}{2} \Bigg|_{y}^{2} \right]}{\frac{3}{8}(2-y)^2} \][/tex]
Evaluating the integral at the limits:
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y - 0 \right]}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y \right]}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{6 - 3y}{(2-y)^2} \][/tex]
Thus, \(\widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2}\).
So, the final answers are:
(a) \( k = \frac{3}{4} \)
(b) \( P(\max \{X, Y\} \leq 1) = \frac{1}{8} \)
(c) [tex]\( \widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2} \)[/tex]
### Part (a): Find \( k \).
To find the constant \( k \), we must use the fact that the total probability over the entire range of the joint probability density function (pdf) must equal 1. This means integrating the given function over the specified range.
The joint pdf is \( f_{X,Y}(x,y) = k(x-y) \) for \( 0 < y < x < 2 \).
1. The integration bounds for \( x \) are from \( y \) to 2.
2. The integration bounds for \( y \) are from 0 to 2.
So, we need to solve:
[tex]\[ \int_{0}^{2} \int_{y}^{2} k(x-y) \, dx \, dy = 1 \][/tex]
First, integrate with respect to \( x \):
[tex]\[ \int_{0}^{2} \left[ \int_{y}^{2} k(x-y) \, dx \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} \left[ k \int_{y}^{2} (x-y) \, dx \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right) \right] dy \][/tex]
Evaluating the inner integral:
[tex]\[ = \int_{0}^{2} \left[ k \left( \frac{(2-y)^2}{2} - 0 \right) \right] dy \][/tex]
[tex]\[ = \int_{0}^{2} k \frac{(2-y)^2}{2} \, dy \][/tex]
Next, simplify and integrate with respect to \( y \):
[tex]\[ = k \int_{0}^{2} \frac{(2-y)^2}{2} \, dy \][/tex]
[tex]\[ = k \frac{1}{2} \int_{0}^{2} (4 - 4y + y^2) \, dy \][/tex]
[tex]\[ = k \frac{1}{2} \left[ 4y - 2y^2 + \frac{y^3}{3} \Bigg|_{0}^{2} \right] \][/tex]
Evaluating this:
[tex]\[ = k \frac{1}{2} \left[ (8 - 8 + \frac{8}{3}) - ( 0 ) \right] \][/tex]
[tex]\[ = k \frac{1}{2} \cdot \frac{8}{3} \][/tex]
[tex]\[ = \frac{4k}{3} \][/tex]
Set this result equal to 1:
[tex]\[ \frac{4k}{3} = 1 \][/tex]
Solving for \( k \):
[tex]\[ k = \frac{3}{4} \][/tex]
### Part (b): Find \( P(\max \{X, Y\} \leq 1) \).
The event \(\{ \max \{X, Y\} \leq 1 \}\) indicates that both \( X \) and \( Y \) must be less than or equal to 1.
The range for the integration is \(0 < y < x < 1 \):
[tex]\[ P(\max\{X, Y\} \leq 1) = \int_{0}^{1} \int_{y}^{1} k(x-y) \, dx \, dy \][/tex]
Using \( k = \frac{3}{4} \):
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \int_{y}^{1} (x-y) \, dx \right] dy \][/tex]
Integrating with respect to \( x \):
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{1} \right] dy \][/tex]
[tex]\[ = \frac{3}{4} \int_{0}^{1} \left[ \frac{(1-y)^2}{2} \right] dy \][/tex]
[tex]\[ = \frac{3}{8} \int_{0}^{1} (1-y)^2 \, dy \][/tex]
[tex]\[ = \frac{3}{8} \left[ \frac{(1-y)^3}{3} \Bigg|_{0}^{1} \right] \][/tex]
[tex]\[ = \frac{3}{8} \cdot \frac{1}{3} \][/tex]
[tex]\[ = \frac{1}{8} \][/tex]
### Part (c): Find \(\widehat{x}_M(y)\), the minimum mean square error estimate of \( X \) given \( Y=y \), \( 0
The conditional expectation of \( X \) given \( Y = y \) is:
[tex]\[ \widehat{x}_M(y) = E[X|Y=y] \][/tex]
This can be found by:
[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x f_{X|Y}(x|y) \, dx}{\int_{y}^{2} f_{X|Y}(x|y) \, dx} \][/tex]
Given \( f_{X,Y}(x,y) = \frac{3}{4}(x-y) \):
The conditional pdf \( f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \):
First, find the marginal pdf of \( Y \):
[tex]\[ f_Y(y) = \int_{y}^{2} \frac{3}{4}(x-y) \, dx \][/tex]
[tex]\[ = \frac{3}{4} \int_{y}^{2} (x-y) \, dx \][/tex]
[tex]\[ = \frac{3}{4} \left[ \frac{(x-y)^2}{2} \Bigg|_{y}^{2} \right] \][/tex]
[tex]\[ = \frac{3}{4} \left[ \frac{(2-y)^2}{2} - 0 \right] \][/tex]
[tex]\[ = \frac{3}{8} (2-y)^2 \][/tex]
Now, calculate the conditional expectation:
[tex]\[ E[X|Y=y] = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{f_Y(y)} \][/tex]
[tex]\[ = \frac{\int_{y}^{2} x \cdot \frac{3}{4}(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
Simplify the numerator:
[tex]\[ = \frac{\int_{y}^{2} \frac{3}{4}x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} x(x-y) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \int_{y}^{2} (x^2 - xy) \, dx}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{x^3}{3} - \frac{xy^2}{2} \Bigg|_{y}^{2} \right]}{\frac{3}{8}(2-y)^2} \][/tex]
Evaluating the integral at the limits:
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y - 0 \right]}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{\frac{3}{4} \left[ \frac{8}{3} - 2y \right]}{\frac{3}{8}(2-y)^2} \][/tex]
[tex]\[ = \frac{6 - 3y}{(2-y)^2} \][/tex]
Thus, \(\widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2}\).
So, the final answers are:
(a) \( k = \frac{3}{4} \)
(b) \( P(\max \{X, Y\} \leq 1) = \frac{1}{8} \)
(c) [tex]\( \widehat{x}_M(y) = \frac{6 - 3y}{(2-y)^2} \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.