Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which representation from the given data sets represents a function, we need to assess whether each set of points satisfies the definition of a function. Recall that a function is a relation where each input (or \( x \)-value) is associated with exactly one output (or \( y \)-value).
Let's examine each set of points separately:
1.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 10 \\
\hline
-3 & 5 \\
\hline
-3 & 4 \\
\hline
0 & 0 \\
\hline
5 & -10 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value -3 is associated with two different \( y \)-values (5 and 4). This means that for \( x = -3 \), there are multiple outputs, which violates the definition of a function. Therefore, this set of points does not represent a function.
2.
[tex]\[ \{(-8, -2), (-4, 1), (0, -2), (2, 3), (4, -4)\} \][/tex]
In this set, each \( x \)-value corresponds to exactly one \( y \)-value. The \( x \)-values are: -8, -4, 0, 2, and 4, and all are unique with unique \( y \)-values associated with them. Hence, this set represents a function.
3.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & -3 \\
\hline
-1 & -2 \\
\hline
0 & -1 \\
\hline
0 & 0 \\
\hline
1 & -1 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value 0 has two different \( y \)-values (-1 and 0). This violates the definition of a function, as there cannot be two different \( y \)-values for the same \( x \)-value. Thus, this set does not represent a function.
4.
[tex]\[ \{(-12, 4), (-6, 10), (-4, 15), (-8, 18), (-12, 24)\} \][/tex]
In this set, the \( x \)-value -12 is associated with two different \( y \)-values (4 and 24). This means that for \( x = -12 \), there are multiple outputs, which violates the definition of a function. Therefore, this set does not represent a function.
After evaluating all four sets, we conclude that only the second set of points represents a function.
Let's examine each set of points separately:
1.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 10 \\
\hline
-3 & 5 \\
\hline
-3 & 4 \\
\hline
0 & 0 \\
\hline
5 & -10 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value -3 is associated with two different \( y \)-values (5 and 4). This means that for \( x = -3 \), there are multiple outputs, which violates the definition of a function. Therefore, this set of points does not represent a function.
2.
[tex]\[ \{(-8, -2), (-4, 1), (0, -2), (2, 3), (4, -4)\} \][/tex]
In this set, each \( x \)-value corresponds to exactly one \( y \)-value. The \( x \)-values are: -8, -4, 0, 2, and 4, and all are unique with unique \( y \)-values associated with them. Hence, this set represents a function.
3.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & -3 \\
\hline
-1 & -2 \\
\hline
0 & -1 \\
\hline
0 & 0 \\
\hline
1 & -1 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value 0 has two different \( y \)-values (-1 and 0). This violates the definition of a function, as there cannot be two different \( y \)-values for the same \( x \)-value. Thus, this set does not represent a function.
4.
[tex]\[ \{(-12, 4), (-6, 10), (-4, 15), (-8, 18), (-12, 24)\} \][/tex]
In this set, the \( x \)-value -12 is associated with two different \( y \)-values (4 and 24). This means that for \( x = -12 \), there are multiple outputs, which violates the definition of a function. Therefore, this set does not represent a function.
After evaluating all four sets, we conclude that only the second set of points represents a function.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.