Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Which represents a function?

A.
[tex]\[
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 10 \\
\hline
-3 & 5 \\
\hline
-3 & 4 \\
\hline
0 & 0 \\
\hline
5 & -10 \\
\hline
\end{tabular}
\][/tex]

B.
[tex]\[
\{(-8,-2),(-4,1),(0,-2),(2,3),(4,-4)\}
\][/tex]

C.
[tex]\[
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & -3 \\
\hline
-1 & -2 \\
\hline
0 & -1 \\
\hline
0 & 0 \\
\hline
1 & -1 \\
\hline
\end{tabular}
\][/tex]

D.
[tex]\[
\{(-12,4),(-6,10),(-4,15),(-8,18),(-12,24)\}
\][/tex]


Sagot :

To determine which representation from the given data sets represents a function, we need to assess whether each set of points satisfies the definition of a function. Recall that a function is a relation where each input (or \( x \)-value) is associated with exactly one output (or \( y \)-value).

Let's examine each set of points separately:

1.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 10 \\
\hline
-3 & 5 \\
\hline
-3 & 4 \\
\hline
0 & 0 \\
\hline
5 & -10 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value -3 is associated with two different \( y \)-values (5 and 4). This means that for \( x = -3 \), there are multiple outputs, which violates the definition of a function. Therefore, this set of points does not represent a function.

2.
[tex]\[ \{(-8, -2), (-4, 1), (0, -2), (2, 3), (4, -4)\} \][/tex]
In this set, each \( x \)-value corresponds to exactly one \( y \)-value. The \( x \)-values are: -8, -4, 0, 2, and 4, and all are unique with unique \( y \)-values associated with them. Hence, this set represents a function.

3.
[tex]\[ \begin{tabular}{|c|c|} \hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & -3 \\
\hline
-1 & -2 \\
\hline
0 & -1 \\
\hline
0 & 0 \\
\hline
1 & -1 \\
\hline
\end{tabular}
\][/tex]
Here, the \( x \)-value 0 has two different \( y \)-values (-1 and 0). This violates the definition of a function, as there cannot be two different \( y \)-values for the same \( x \)-value. Thus, this set does not represent a function.

4.
[tex]\[ \{(-12, 4), (-6, 10), (-4, 15), (-8, 18), (-12, 24)\} \][/tex]
In this set, the \( x \)-value -12 is associated with two different \( y \)-values (4 and 24). This means that for \( x = -12 \), there are multiple outputs, which violates the definition of a function. Therefore, this set does not represent a function.

After evaluating all four sets, we conclude that only the second set of points represents a function.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.