At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

How long will it take for a car to accelerate from a speed of [tex]20.0 \, \text{m/s}[/tex] to a speed of [tex]25.0 \, \text{m/s}[/tex] if the acceleration is [tex]3.0 \, \text{m/s}^2[/tex]?

Sagot :

To determine how long it will take for a car to accelerate from a speed of \( 20.0 \, \text{m/s} \) to a speed of \( 25.0 \, \text{m/s} \) with an acceleration of \( 3.0 \, \text{m/s}^2 \), we can use the basic kinematic equation that relates speed, acceleration, and time:

[tex]\[ \text{final speed} = \text{initial speed} + (\text{acceleration} \times \text{time}) \][/tex]

Rearranging this formula to solve for time (\( t \)), we get:

[tex]\[ t = \frac{\text{final speed} - \text{initial speed}}{\text{acceleration}} \][/tex]

Let's plug in the values given:

- Initial speed (\( v_i \)) = \( 20.0 \, \text{m/s} \)
- Final speed (\( v_f \)) = \( 25.0 \, \text{m/s} \)
- Acceleration (\( a \)) = \( 3.0 \, \text{m/s}^2 \)

Substitute these values into the formula:

[tex]\[ t = \frac{25.0 \, \text{m/s} - 20.0 \, \text{m/s}}{3.0 \, \text{m/s}^2} \][/tex]

Calculate the difference in speeds:

[tex]\[ 25.0 \, \text{m/s} - 20.0 \, \text{m/s} = 5.0 \, \text{m/s} \][/tex]

Now, divide this by the acceleration:

[tex]\[ t = \frac{5.0 \, \text{m/s}}{3.0 \, \text{m/s}^2} = 1.\overline{6} \, \text{s} \][/tex]

Therefore, the time required for the car to go from [tex]\( 20.0 \, \text{m/s} \)[/tex] to [tex]\( 25.0 \, \text{m/s} \)[/tex] is approximately [tex]\( 1.67 \)[/tex] seconds, which can be represented more precisely as [tex]\( 1.6666666666666667 \)[/tex] seconds.