Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The polynomial [tex]$f(x) = x^4 - 2x^3 + 3x^2 - ax + b[tex]$[/tex] when divided by [tex]$[/tex](x - 1)[tex]$[/tex] and [tex]$[/tex](x + 1)$[/tex] leaves remainders 5 and 19, respectively.

Find the values of [tex]a[/tex] and [tex]b[/tex].

Hence, find the remainder when [tex]f(x)[/tex] is divided by [tex](x - 2)[/tex].


Sagot :

To solve this problem, we need to find the values of \(a\) and \(b\) that satisfy the given conditions and then determine the remainder when \(f(x)\) is divided by \((x - 2)\).

1. Given polynomial:
[tex]\[ f(x) = x^4 - 2x^3 + 3x^2 - ax + b \][/tex]

2. Conditions provided:
- When \(f(x)\) is divided by \((x - 1)\), the remainder is 5.
- When \(f(x)\) is divided by \((x + 1)\), the remainder is 19.

From the Remainder Theorem, we know that:
[tex]\[ f(1) = 5 \quad \text{and} \quad f(-1) = 19 \][/tex]

3. Substitute \(x = 1\) into \(f(x)\):
[tex]\[ f(1) = 1^4 - 2(1^3) + 3(1^2) - a(1) + b = 1 - 2 + 3 - a + b = 2 - a + b \][/tex]
We know \(f(1) = 5\), so:
[tex]\[ 2 - a + b = 5 \quad \Rightarrow \quad -a + b = 3 \quad \text{(Equation 1)} \][/tex]

4. Substitute \(x = -1\) into \(f(x)\):
[tex]\[ f(-1) = (-1)^4 - 2(-1)^3 + 3(-1)^2 - a(-1) + b = 1 + 2 + 3 + a + b = 6 + a + b \][/tex]
We know \(f(-1) = 19\), so:
[tex]\[ 6 + a + b = 19 \quad \Rightarrow \quad a + b = 13 \quad \text{(Equation 2)} \][/tex]

5. Solve the system of equations:
[tex]\[ \begin{cases} -a + b = 3 \quad \text{(Equation 1)} \\ a + b = 13 \quad \text{(Equation 2)} \end{cases} \][/tex]

Add the two equations to eliminate \(a\):
[tex]\[ (-a + b) + (a + b) = 3 + 13 \][/tex]
[tex]\[ 2b = 16 \quad \Rightarrow \quad b = 8 \][/tex]

Substitute \(b = 8\) back into Equation 2:
[tex]\[ a + 8 = 13 \quad \Rightarrow \quad a = 5 \][/tex]

So, the values are:
[tex]\[ a = 5, \quad b = 8 \][/tex]

6. Find the remainder when \(f(x)\) is divided by \((x - 2)\):
Substitute \(a = 5\) and \(b = 8\) into \(f(x)\):
[tex]\[ f(x) = x^4 - 2x^3 + 3x^2 - 5x + 8 \][/tex]
To find the remainder when \(f(x)\) is divided by \((x - 2)\), use the Remainder Theorem:
[tex]\[ \text{Remainder} = f(2) \][/tex]

Calculate \(f(2)\):
[tex]\[ f(2) = 2^4 - 2(2^3) + 3(2^2) - 5(2) + 8 \][/tex]
[tex]\[ = 16 - 16 + 12 - 10 + 8 \][/tex]
[tex]\[ = 16 - 16 + 12 - 10 + 8 \][/tex]
[tex]\[ = 10 \][/tex]

Therefore, the remainder when \(f(x)\) is divided by \((x - 2)\) is:
[tex]\[ \boxed{10} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.