Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the function that matches the given end behavior, let's analyze each option step-by-step:
1. Option A: \( y = -3x^2 + 4 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = -3(-\infty)^2 + 4 \approx -\infty \][/tex]
Thus, as \( x \) approaches negative infinity, \( y \) approaches negative infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = -3(\infty)^2 + 4 \approx -\infty \][/tex]
Hence, as \( x \) approaches positive infinity, \( y \) also approaches negative infinity.
2. Option B: \( y = 3(x-1)^2 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = 3(-\infty - 1)^2 \approx +\infty \][/tex]
So, as \( x \) approaches negative infinity, \( y \) approaches positive infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = 3(\infty - 1)^2 \approx +\infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( y \) also approaches positive infinity.
3. Option C: \( y = (x+2)^3 - 9 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = (-\infty + 2)^3 - 9 \approx -\infty \][/tex]
Hence, as \( x \) approaches negative infinity, \( y \) also approaches negative infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = (\infty + 2)^3 - 9 \approx +\infty \][/tex]
So, as \( x \) approaches positive infinity, \( y \) approaches positive infinity.
4. Option D: \( y = -2x^3 - 1 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = -2(-\infty)^3 - 1 \approx +\infty \][/tex]
Hence, as \( x \) approaches negative infinity, \( y \) approaches positive infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = -2(\infty)^3 - 1 \approx -\infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( y \) approaches negative infinity.
Based on our analysis, the function that exhibits the correct end behavior (i.e., as \( x \) approaches negative infinity, \( y \) approaches positive infinity, and as \( x \) approaches positive infinity, \( y \) approaches negative infinity) is:
[tex]\[ \boxed{y = -2x^3 - 1} \][/tex]
So the correct answer is D.
1. Option A: \( y = -3x^2 + 4 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = -3(-\infty)^2 + 4 \approx -\infty \][/tex]
Thus, as \( x \) approaches negative infinity, \( y \) approaches negative infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = -3(\infty)^2 + 4 \approx -\infty \][/tex]
Hence, as \( x \) approaches positive infinity, \( y \) also approaches negative infinity.
2. Option B: \( y = 3(x-1)^2 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = 3(-\infty - 1)^2 \approx +\infty \][/tex]
So, as \( x \) approaches negative infinity, \( y \) approaches positive infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = 3(\infty - 1)^2 \approx +\infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( y \) also approaches positive infinity.
3. Option C: \( y = (x+2)^3 - 9 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = (-\infty + 2)^3 - 9 \approx -\infty \][/tex]
Hence, as \( x \) approaches negative infinity, \( y \) also approaches negative infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = (\infty + 2)^3 - 9 \approx +\infty \][/tex]
So, as \( x \) approaches positive infinity, \( y \) approaches positive infinity.
4. Option D: \( y = -2x^3 - 1 \)
- For large negative values of \( x \) (i.e., \( x \to -\infty \)):
[tex]\[ y = -2(-\infty)^3 - 1 \approx +\infty \][/tex]
Hence, as \( x \) approaches negative infinity, \( y \) approaches positive infinity.
- For large positive values of \( x \) (i.e., \( x \to +\infty \)):
[tex]\[ y = -2(\infty)^3 - 1 \approx -\infty \][/tex]
Therefore, as \( x \) approaches positive infinity, \( y \) approaches negative infinity.
Based on our analysis, the function that exhibits the correct end behavior (i.e., as \( x \) approaches negative infinity, \( y \) approaches positive infinity, and as \( x \) approaches positive infinity, \( y \) approaches negative infinity) is:
[tex]\[ \boxed{y = -2x^3 - 1} \][/tex]
So the correct answer is D.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.