Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the frequency of individuals that are heterozygous in a population, we can use the Hardy-Weinberg principle. This principle states that the frequencies of alleles and genotypes in a population will remain constant from generation to generation in the absence of other evolutionary influences. According to this principle:
- Let \( p \) be the frequency of the dominant allele (in this case, \( p = 0.70 \)).
- Let \( q \) be the frequency of the recessive allele.
Since the total frequency of alleles in the population must add up to 1, we have:
[tex]\[ q = 1 - p \][/tex]
[tex]\[ q = 1 - 0.70 \][/tex]
[tex]\[ q = 0.30 \][/tex]
The frequency of heterozygous individuals, who have one dominant allele and one recessive allele, can be found using the formula:
[tex]\[ 2pq \][/tex]
where \( p \) is the frequency of the dominant allele and \( q \) is the frequency of the recessive allele.
Substituting the values of \( p \) and \( q \) into the formula:
[tex]\[ 2 \times 0.70 \times 0.30 \][/tex]
This will give us the frequency of heterozygous individuals in the population. By multiplying:
[tex]\[ 2 \times 0.70 \times 0.30 = 0.42 \][/tex]
Hence, the correct way to calculate the frequency of individuals that are heterozygous is given by option:
C. [tex]\( 2 \times (0.70) \times (0.30) \)[/tex]
- Let \( p \) be the frequency of the dominant allele (in this case, \( p = 0.70 \)).
- Let \( q \) be the frequency of the recessive allele.
Since the total frequency of alleles in the population must add up to 1, we have:
[tex]\[ q = 1 - p \][/tex]
[tex]\[ q = 1 - 0.70 \][/tex]
[tex]\[ q = 0.30 \][/tex]
The frequency of heterozygous individuals, who have one dominant allele and one recessive allele, can be found using the formula:
[tex]\[ 2pq \][/tex]
where \( p \) is the frequency of the dominant allele and \( q \) is the frequency of the recessive allele.
Substituting the values of \( p \) and \( q \) into the formula:
[tex]\[ 2 \times 0.70 \times 0.30 \][/tex]
This will give us the frequency of heterozygous individuals in the population. By multiplying:
[tex]\[ 2 \times 0.70 \times 0.30 = 0.42 \][/tex]
Hence, the correct way to calculate the frequency of individuals that are heterozygous is given by option:
C. [tex]\( 2 \times (0.70) \times (0.30) \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.