Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the simplest form of [tex]\sqrt[3]{x^{10}}[/tex]?

A. [tex]3 \sqrt[3]{x}[/tex]
B. [tex]x \sqrt[3]{x}[/tex]
C. [tex]x^3 \sqrt[3]{x}[/tex]
D. [tex]3 x \sqrt[3]{x}[/tex]


Sagot :

To determine the simplest form of \(\sqrt[3]{x^{10}}\), we can follow a systematic process.

1. Rewrite the expression \( x^{10} \) in a simpler form:
\( x^{10} = (x^9) \cdot x \)

2. Breakdown the expression:
We need to separate \( x^{10} \) into components that can be easily managed under the cube root.

3. Use the property of exponents:
Recall that \(\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}\). Applying this to our expression, we get:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} \][/tex]

4. Simplify \(\sqrt[3]{x^9}\):
Note that \( x^9 \) can be simplified under a cube root because \( (x^3)^3 = x^9 \). Therefore:
[tex]\[ \sqrt[3]{x^9} = x^3 \][/tex]

5. Combine the simplified parts:
Now we can rewrite our expression as:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} = \sqrt[3]{x^9} \cdot \sqrt[3]{x} = x^3 \cdot \sqrt[3]{x} \][/tex]

Thus, the simplest form of \(\sqrt[3]{x^{10}}\) is:
[tex]\[ \boxed{x^3 \sqrt[3]{x}} \][/tex]