Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the simplest form of \(\sqrt[3]{x^{10}}\), we can follow a systematic process.
1. Rewrite the expression \( x^{10} \) in a simpler form:
\( x^{10} = (x^9) \cdot x \)
2. Breakdown the expression:
We need to separate \( x^{10} \) into components that can be easily managed under the cube root.
3. Use the property of exponents:
Recall that \(\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}\). Applying this to our expression, we get:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} \][/tex]
4. Simplify \(\sqrt[3]{x^9}\):
Note that \( x^9 \) can be simplified under a cube root because \( (x^3)^3 = x^9 \). Therefore:
[tex]\[ \sqrt[3]{x^9} = x^3 \][/tex]
5. Combine the simplified parts:
Now we can rewrite our expression as:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} = \sqrt[3]{x^9} \cdot \sqrt[3]{x} = x^3 \cdot \sqrt[3]{x} \][/tex]
Thus, the simplest form of \(\sqrt[3]{x^{10}}\) is:
[tex]\[ \boxed{x^3 \sqrt[3]{x}} \][/tex]
1. Rewrite the expression \( x^{10} \) in a simpler form:
\( x^{10} = (x^9) \cdot x \)
2. Breakdown the expression:
We need to separate \( x^{10} \) into components that can be easily managed under the cube root.
3. Use the property of exponents:
Recall that \(\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}\). Applying this to our expression, we get:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} \][/tex]
4. Simplify \(\sqrt[3]{x^9}\):
Note that \( x^9 \) can be simplified under a cube root because \( (x^3)^3 = x^9 \). Therefore:
[tex]\[ \sqrt[3]{x^9} = x^3 \][/tex]
5. Combine the simplified parts:
Now we can rewrite our expression as:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} = \sqrt[3]{x^9} \cdot \sqrt[3]{x} = x^3 \cdot \sqrt[3]{x} \][/tex]
Thus, the simplest form of \(\sqrt[3]{x^{10}}\) is:
[tex]\[ \boxed{x^3 \sqrt[3]{x}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.