Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To evaluate the integral \(\int_0^1 \int (x^2 + y^2 + z^2) \, dxdydz \) over the volume enclosed by the surface \( x^2 + y^2 + z^2 = 1 \), we can use spherical coordinates to simplify the computation. Here is a detailed, step-by-step solution:
1. Express the integrand and limits in spherical coordinates:
[tex]\[ x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta \][/tex]
The volume element in spherical coordinates is given by:
[tex]\[ dV = r^2 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
2. Rewrite the integrand \(x^2 + y^2 + z^2\) in spherical coordinates:
[tex]\[ x^2 + y^2 + z^2 = (r \sin \theta \cos \phi)^2 + (r \sin \theta \sin \phi)^2 + (r \cos \theta)^2 \][/tex]
Simplifying this, we get:
[tex]\[ x^2 + y^2 + z^2 = r^2 (\sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta) = r^2 (\sin^2 \theta (\cos^2 \phi + \sin^2 \phi) + \cos^2 \theta) = r^2 (\sin^2 \theta + \cos^2 \theta) = r^2 \][/tex]
3. Set up the integral in spherical coordinates:
[tex]\[ \iiint_V (x^2 + y^2 + z^2) \, dV \rightarrow \iiint_V r^2 \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi = \iiint_V r^4 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
The limits for the spherical coordinates are:
[tex]\[ 0 \leq r \leq 1, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi \leq 2\pi \][/tex]
4. Evaluate the integral step-by-step:
First, integrate with respect to \(\phi\):
[tex]\[ \int_0^{2\pi} \int_0^{\pi} \int_0^1 r^4 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
The \(\phi\) part is straightforward:
[tex]\[ \int_0^{2\pi} d\phi = 2\pi \][/tex]
Now, perform the integration with respect to \(r\):
[tex]\[ \int_0^1 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^1 = \frac{1}{5} \][/tex]
Finally, perform the integration with respect to \(\theta\):
[tex]\[ \int_0^\pi \sin \theta \, d\theta = \left[ -\cos \theta \right]_0^\pi = (-\cos \pi) - (-\cos 0) = 1 - (-1) = 2 \][/tex]
5. Combine the results:
[tex]\[ (2\pi) \cdot \left( \frac{1}{5} \right) \cdot (2) = 2\pi \cdot \frac{2}{5} = \frac{4\pi}{5} \][/tex]
Therefore, the final result is:
[tex]\[ \boxed{1.67551608191456} \][/tex]
1. Express the integrand and limits in spherical coordinates:
[tex]\[ x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta \][/tex]
The volume element in spherical coordinates is given by:
[tex]\[ dV = r^2 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
2. Rewrite the integrand \(x^2 + y^2 + z^2\) in spherical coordinates:
[tex]\[ x^2 + y^2 + z^2 = (r \sin \theta \cos \phi)^2 + (r \sin \theta \sin \phi)^2 + (r \cos \theta)^2 \][/tex]
Simplifying this, we get:
[tex]\[ x^2 + y^2 + z^2 = r^2 (\sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta) = r^2 (\sin^2 \theta (\cos^2 \phi + \sin^2 \phi) + \cos^2 \theta) = r^2 (\sin^2 \theta + \cos^2 \theta) = r^2 \][/tex]
3. Set up the integral in spherical coordinates:
[tex]\[ \iiint_V (x^2 + y^2 + z^2) \, dV \rightarrow \iiint_V r^2 \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi = \iiint_V r^4 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
The limits for the spherical coordinates are:
[tex]\[ 0 \leq r \leq 1, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi \leq 2\pi \][/tex]
4. Evaluate the integral step-by-step:
First, integrate with respect to \(\phi\):
[tex]\[ \int_0^{2\pi} \int_0^{\pi} \int_0^1 r^4 \sin \theta \, dr \, d\theta \, d\phi \][/tex]
The \(\phi\) part is straightforward:
[tex]\[ \int_0^{2\pi} d\phi = 2\pi \][/tex]
Now, perform the integration with respect to \(r\):
[tex]\[ \int_0^1 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^1 = \frac{1}{5} \][/tex]
Finally, perform the integration with respect to \(\theta\):
[tex]\[ \int_0^\pi \sin \theta \, d\theta = \left[ -\cos \theta \right]_0^\pi = (-\cos \pi) - (-\cos 0) = 1 - (-1) = 2 \][/tex]
5. Combine the results:
[tex]\[ (2\pi) \cdot \left( \frac{1}{5} \right) \cdot (2) = 2\pi \cdot \frac{2}{5} = \frac{4\pi}{5} \][/tex]
Therefore, the final result is:
[tex]\[ \boxed{1.67551608191456} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.