Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's analyze the problem step by step.
### Step 1: Equation of the given line
The given line equation is:
[tex]\[ y = \frac{2}{7}x - 6 \][/tex]
The slope of this line is \(\frac{2}{7}\).
### Step 2: Parallel Line through (4, 3)
For a line to be parallel to the given line, it must have the same slope. So, the slope of the parallel line will also be \(\frac{2}{7}\).
Using the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is the point the line passes through and \(m\) is the slope. Here, \((x_1, y_1) = (4, 3)\) and \(m = \frac{2}{7}\).
Substitute the values:
[tex]\[ y - 3 = \frac{2}{7}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = \frac{2}{7}x - \frac{8}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + 3 \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + \frac{21}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x + \frac{13}{7} \][/tex]
So, the equation of the parallel line is:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
### Step 3: Perpendicular Line through (4, 3)
For a line to be perpendicular to the given line, its slope must be the negative reciprocal of the slope of the given line. The slope of the given line is \(\frac{2}{7}\), so the slope of the perpendicular line will be:
[tex]\[ m_{\perpendicular} = -\frac{7}{2} \][/tex]
Using the same point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \((x_1, y_1) = (4, 3)\) and \(m = -\frac{7}{2}\):
[tex]\[ y - 3 = -\frac{7}{2}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = -\frac{7}{2}x + 14 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 14 + 3 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 17 \][/tex]
So, the equation of the perpendicular line is:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Summary of Results
- Equation of the parallel line: [tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
- Equation of the perpendicular line: [tex]\[ y = 17 - 3.5 x \][/tex]
Feel free to fill these results into the squares provided in your question:
Equation of parallel line:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
Equation of perpendicular line:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Step 1: Equation of the given line
The given line equation is:
[tex]\[ y = \frac{2}{7}x - 6 \][/tex]
The slope of this line is \(\frac{2}{7}\).
### Step 2: Parallel Line through (4, 3)
For a line to be parallel to the given line, it must have the same slope. So, the slope of the parallel line will also be \(\frac{2}{7}\).
Using the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is the point the line passes through and \(m\) is the slope. Here, \((x_1, y_1) = (4, 3)\) and \(m = \frac{2}{7}\).
Substitute the values:
[tex]\[ y - 3 = \frac{2}{7}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = \frac{2}{7}x - \frac{8}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + 3 \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + \frac{21}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x + \frac{13}{7} \][/tex]
So, the equation of the parallel line is:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
### Step 3: Perpendicular Line through (4, 3)
For a line to be perpendicular to the given line, its slope must be the negative reciprocal of the slope of the given line. The slope of the given line is \(\frac{2}{7}\), so the slope of the perpendicular line will be:
[tex]\[ m_{\perpendicular} = -\frac{7}{2} \][/tex]
Using the same point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \((x_1, y_1) = (4, 3)\) and \(m = -\frac{7}{2}\):
[tex]\[ y - 3 = -\frac{7}{2}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = -\frac{7}{2}x + 14 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 14 + 3 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 17 \][/tex]
So, the equation of the perpendicular line is:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Summary of Results
- Equation of the parallel line: [tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
- Equation of the perpendicular line: [tex]\[ y = 17 - 3.5 x \][/tex]
Feel free to fill these results into the squares provided in your question:
Equation of parallel line:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
Equation of perpendicular line:
[tex]\[ y = 17 - 3.5 x \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.