Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's analyze the problem step by step.
### Step 1: Equation of the given line
The given line equation is:
[tex]\[ y = \frac{2}{7}x - 6 \][/tex]
The slope of this line is \(\frac{2}{7}\).
### Step 2: Parallel Line through (4, 3)
For a line to be parallel to the given line, it must have the same slope. So, the slope of the parallel line will also be \(\frac{2}{7}\).
Using the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is the point the line passes through and \(m\) is the slope. Here, \((x_1, y_1) = (4, 3)\) and \(m = \frac{2}{7}\).
Substitute the values:
[tex]\[ y - 3 = \frac{2}{7}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = \frac{2}{7}x - \frac{8}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + 3 \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + \frac{21}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x + \frac{13}{7} \][/tex]
So, the equation of the parallel line is:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
### Step 3: Perpendicular Line through (4, 3)
For a line to be perpendicular to the given line, its slope must be the negative reciprocal of the slope of the given line. The slope of the given line is \(\frac{2}{7}\), so the slope of the perpendicular line will be:
[tex]\[ m_{\perpendicular} = -\frac{7}{2} \][/tex]
Using the same point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \((x_1, y_1) = (4, 3)\) and \(m = -\frac{7}{2}\):
[tex]\[ y - 3 = -\frac{7}{2}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = -\frac{7}{2}x + 14 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 14 + 3 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 17 \][/tex]
So, the equation of the perpendicular line is:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Summary of Results
- Equation of the parallel line: [tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
- Equation of the perpendicular line: [tex]\[ y = 17 - 3.5 x \][/tex]
Feel free to fill these results into the squares provided in your question:
Equation of parallel line:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
Equation of perpendicular line:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Step 1: Equation of the given line
The given line equation is:
[tex]\[ y = \frac{2}{7}x - 6 \][/tex]
The slope of this line is \(\frac{2}{7}\).
### Step 2: Parallel Line through (4, 3)
For a line to be parallel to the given line, it must have the same slope. So, the slope of the parallel line will also be \(\frac{2}{7}\).
Using the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is the point the line passes through and \(m\) is the slope. Here, \((x_1, y_1) = (4, 3)\) and \(m = \frac{2}{7}\).
Substitute the values:
[tex]\[ y - 3 = \frac{2}{7}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = \frac{2}{7}x - \frac{8}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + 3 \][/tex]
[tex]\[ y = \frac{2}{7}x - \frac{8}{7} + \frac{21}{7} \][/tex]
[tex]\[ y = \frac{2}{7}x + \frac{13}{7} \][/tex]
So, the equation of the parallel line is:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
### Step 3: Perpendicular Line through (4, 3)
For a line to be perpendicular to the given line, its slope must be the negative reciprocal of the slope of the given line. The slope of the given line is \(\frac{2}{7}\), so the slope of the perpendicular line will be:
[tex]\[ m_{\perpendicular} = -\frac{7}{2} \][/tex]
Using the same point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substitute \((x_1, y_1) = (4, 3)\) and \(m = -\frac{7}{2}\):
[tex]\[ y - 3 = -\frac{7}{2}(x - 4) \][/tex]
Solving for \(y\):
[tex]\[ y - 3 = -\frac{7}{2}x + 14 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 14 + 3 \][/tex]
[tex]\[ y = -\frac{7}{2}x + 17 \][/tex]
So, the equation of the perpendicular line is:
[tex]\[ y = 17 - 3.5 x \][/tex]
### Summary of Results
- Equation of the parallel line: [tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
- Equation of the perpendicular line: [tex]\[ y = 17 - 3.5 x \][/tex]
Feel free to fill these results into the squares provided in your question:
Equation of parallel line:
[tex]\[ y = 0.285714285714286 x + 1.85714285714286 \][/tex]
Equation of perpendicular line:
[tex]\[ y = 17 - 3.5 x \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.