At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Which of the following are quadratic equations?

A. [tex]x^3 - x = x^2 + 2[/tex]

Sagot :

To determine if the given equation \( x^3 - x = x^2 + 2 \) is a quadratic equation, we need to rewrite it in standard polynomial form and analyze its degree.

1. Start with the given equation:
[tex]\[ x^3 - x = x^2 + 2 \][/tex]

2. Move all terms to one side of the equation to set it to zero:
[tex]\[ x^3 - x - x^2 - 2 = 0 \][/tex]

3. Rearrange the equation in terms of decreasing powers of \( x \):
[tex]\[ x^3 - x^2 - x - 2 = 0 \][/tex]

4. Identify the highest degree term. In the equation \( x^3 - x^2 - x - 2 = 0 \), the highest degree term is \( x^3 \), which indicates that this is a cubic equation because the highest power of \( x \) is 3.

To be quadratic, an equation must be of the form \( ax^2 + bx + c = 0 \) where the highest power of \( x \) is 2.

Since the degree of the polynomial is 3, the equation [tex]\( x^3 - x = x^2 + 2 \)[/tex] is not quadratic; it is a cubic equation.