Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To complete the trinomial \( k^2 - 7k \) so that it is a perfect square and then factor it, we can follow these steps:
1. Identify the coefficient of \( k \):
The coefficient of \( k \) is \(-7\).
2. Calculate the term needed to complete the square:
To complete the square, we take half of the coefficient of \( k \), and then square it.
So, \(\left(\frac{-7}{2}\right)^2 = \left(\frac{-7}{2}\right) \cdot \left(\frac{-7}{2}\right) = \frac{49}{4}\).
3. Add and subtract the calculated term inside the equation:
Insert \(\frac{49}{4}\) to complete the trinomial.
Therefore, the trinomial becomes:
[tex]\[ k^2 - 7k + \frac{49}{4} \][/tex]
4. Factor the completed square trinomial:
For a trinomial \( k^2 + 2bk + b^2 \), it factors to \((k + b)^2\). Here, we need to rewrite our trinomial in that form.
Since \( b = \frac{-7}{2} \), the trinomial \( k^2 - 7k + \frac{49}{4} \) factors to:
[tex]\[ \left(k - \frac{7}{2}\right)^2 \][/tex]
So the final solutions are:
- The missing term that completes the square is \(\frac{49}{4}\).
- The trinomial factors to [tex]\(\left(k - \frac{7}{2}\right)^2\)[/tex].
1. Identify the coefficient of \( k \):
The coefficient of \( k \) is \(-7\).
2. Calculate the term needed to complete the square:
To complete the square, we take half of the coefficient of \( k \), and then square it.
So, \(\left(\frac{-7}{2}\right)^2 = \left(\frac{-7}{2}\right) \cdot \left(\frac{-7}{2}\right) = \frac{49}{4}\).
3. Add and subtract the calculated term inside the equation:
Insert \(\frac{49}{4}\) to complete the trinomial.
Therefore, the trinomial becomes:
[tex]\[ k^2 - 7k + \frac{49}{4} \][/tex]
4. Factor the completed square trinomial:
For a trinomial \( k^2 + 2bk + b^2 \), it factors to \((k + b)^2\). Here, we need to rewrite our trinomial in that form.
Since \( b = \frac{-7}{2} \), the trinomial \( k^2 - 7k + \frac{49}{4} \) factors to:
[tex]\[ \left(k - \frac{7}{2}\right)^2 \][/tex]
So the final solutions are:
- The missing term that completes the square is \(\frac{49}{4}\).
- The trinomial factors to [tex]\(\left(k - \frac{7}{2}\right)^2\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.