At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the inverse of the function \( y = 2x^2 - 8 \), we need to follow a series of steps. Here is the detailed step-by-step solution:
1. Express \( y \) in terms of \( x \):
Given the function:
[tex]\[ y = 2x^2 - 8 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
3. Solve for \( y \):
We need to isolate \( y \) on one side. Start by solving the equation for \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
Add 8 to both sides:
[tex]\[ x + 8 = 2y^2 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{x + 8}{2} = y^2 \][/tex]
Take the square root of both sides. Remember that taking the square root introduces a plus and minus:
[tex]\[ y = \pm \sqrt{\frac{x + 8}{2}} \][/tex]
4. Verify the solution:
Thus, the inverse functions derived from the original function are:
[tex]\[ y = \sqrt{\frac{x + 8}{2}} \quad \text{and} \quad y = -\sqrt{\frac{x + 8}{2}} \][/tex]
Given these steps and the derived expressions, the correct inverse equations align with the option:
[tex]\[ y= \pm \sqrt{\frac{x}{2} + 8} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{y= \pm \sqrt{\frac{x}{2} + 8}} \][/tex]
1. Express \( y \) in terms of \( x \):
Given the function:
[tex]\[ y = 2x^2 - 8 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
3. Solve for \( y \):
We need to isolate \( y \) on one side. Start by solving the equation for \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
Add 8 to both sides:
[tex]\[ x + 8 = 2y^2 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{x + 8}{2} = y^2 \][/tex]
Take the square root of both sides. Remember that taking the square root introduces a plus and minus:
[tex]\[ y = \pm \sqrt{\frac{x + 8}{2}} \][/tex]
4. Verify the solution:
Thus, the inverse functions derived from the original function are:
[tex]\[ y = \sqrt{\frac{x + 8}{2}} \quad \text{and} \quad y = -\sqrt{\frac{x + 8}{2}} \][/tex]
Given these steps and the derived expressions, the correct inverse equations align with the option:
[tex]\[ y= \pm \sqrt{\frac{x}{2} + 8} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{y= \pm \sqrt{\frac{x}{2} + 8}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.