Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse of the function \( y = 2x^2 - 8 \), we need to follow a series of steps. Here is the detailed step-by-step solution:
1. Express \( y \) in terms of \( x \):
Given the function:
[tex]\[ y = 2x^2 - 8 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
3. Solve for \( y \):
We need to isolate \( y \) on one side. Start by solving the equation for \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
Add 8 to both sides:
[tex]\[ x + 8 = 2y^2 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{x + 8}{2} = y^2 \][/tex]
Take the square root of both sides. Remember that taking the square root introduces a plus and minus:
[tex]\[ y = \pm \sqrt{\frac{x + 8}{2}} \][/tex]
4. Verify the solution:
Thus, the inverse functions derived from the original function are:
[tex]\[ y = \sqrt{\frac{x + 8}{2}} \quad \text{and} \quad y = -\sqrt{\frac{x + 8}{2}} \][/tex]
Given these steps and the derived expressions, the correct inverse equations align with the option:
[tex]\[ y= \pm \sqrt{\frac{x}{2} + 8} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{y= \pm \sqrt{\frac{x}{2} + 8}} \][/tex]
1. Express \( y \) in terms of \( x \):
Given the function:
[tex]\[ y = 2x^2 - 8 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
3. Solve for \( y \):
We need to isolate \( y \) on one side. Start by solving the equation for \( y \):
[tex]\[ x = 2y^2 - 8 \][/tex]
Add 8 to both sides:
[tex]\[ x + 8 = 2y^2 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{x + 8}{2} = y^2 \][/tex]
Take the square root of both sides. Remember that taking the square root introduces a plus and minus:
[tex]\[ y = \pm \sqrt{\frac{x + 8}{2}} \][/tex]
4. Verify the solution:
Thus, the inverse functions derived from the original function are:
[tex]\[ y = \sqrt{\frac{x + 8}{2}} \quad \text{and} \quad y = -\sqrt{\frac{x + 8}{2}} \][/tex]
Given these steps and the derived expressions, the correct inverse equations align with the option:
[tex]\[ y= \pm \sqrt{\frac{x}{2} + 8} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{y= \pm \sqrt{\frac{x}{2} + 8}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.