Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Select the correct answer.

A regular polygon has an exterior angle measuring [tex]30^{\circ}[/tex]. How many sides does the polygon have?

A. 14
B. 12
C. 8
D. 10


Sagot :

To determine the number of sides in a regular polygon given the measure of an exterior angle, we use the fact that the sum of all exterior angles of any polygon is always \(360^\circ\).

Here’s a step-by-step process for solving the problem:

1. Understand the problem: We are given that the exterior angle of a regular polygon is \(30^\circ\) and we need to find the number of sides (\(n\)) of this polygon.

2. Sum of exterior angles: The sum of all exterior angles of a polygon is always \(360^\circ\).

3. Formula for exterior angle: The measure of each exterior angle of a regular polygon is given by:
[tex]\[ \text{Exterior angle} = \frac{360^\circ}{n} \][/tex]
where \(n\) is the number of sides.

4. Set up the equation: Given the exterior angle is \(30^\circ\), we substitute this into the formula:
[tex]\[ 30^\circ = \frac{360^\circ}{n} \][/tex]

5. Solve for \(n\):
[tex]\[ n = \frac{360^\circ}{30^\circ} \][/tex]

6. Calculate the number of sides:
[tex]\[ n = 12 \][/tex]

Thus, the regular polygon has 12 sides. Therefore, the correct answer is:

B. 12