At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which line is perpendicular to a given line with a slope of \( -\frac{5}{6} \), we need to recall an important property of perpendicular lines: the slopes of two perpendicular lines are negative reciprocals of each other.
Here's the step-by-step solution:
1. Identify the given slope: The given slope of the line is \( -\frac{5}{6} \).
2. Find the negative reciprocal of the given slope:
- The negative reciprocal of a number \( a \) is found by taking the reciprocal of \( a \) (which means swapping the numerator and denominator) and then changing its sign.
- The reciprocal of \( -\frac{5}{6} \) is \( -\frac{6}{5} \).
- Changing the sign of \( -\frac{6}{5} \) gives \( \frac{6}{5} \).
3. Converting the slope to decimal form:
- \( \frac{6}{5} \) as a decimal is \( 1.2 \).
Therefore, a line that is perpendicular to a line with a slope of \( -\frac{5}{6} \) has a slope of \( 1.2 \).
To determine which specific line (line JK, line LM, line NO, or line PQ) is perpendicular, we would need to know the slopes of those lines. However, based on the information given, we have established that the slope of the perpendicular line should be \( 1.2 \).
Identify the line among JK, LM, NO, and PQ whose slope matches [tex]\( 1.2 \)[/tex] and that will be our answer.
Here's the step-by-step solution:
1. Identify the given slope: The given slope of the line is \( -\frac{5}{6} \).
2. Find the negative reciprocal of the given slope:
- The negative reciprocal of a number \( a \) is found by taking the reciprocal of \( a \) (which means swapping the numerator and denominator) and then changing its sign.
- The reciprocal of \( -\frac{5}{6} \) is \( -\frac{6}{5} \).
- Changing the sign of \( -\frac{6}{5} \) gives \( \frac{6}{5} \).
3. Converting the slope to decimal form:
- \( \frac{6}{5} \) as a decimal is \( 1.2 \).
Therefore, a line that is perpendicular to a line with a slope of \( -\frac{5}{6} \) has a slope of \( 1.2 \).
To determine which specific line (line JK, line LM, line NO, or line PQ) is perpendicular, we would need to know the slopes of those lines. However, based on the information given, we have established that the slope of the perpendicular line should be \( 1.2 \).
Identify the line among JK, LM, NO, and PQ whose slope matches [tex]\( 1.2 \)[/tex] and that will be our answer.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.