Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's solve this problem step-by-step using modular arithmetic and the given congruences:
1. Identify the given congruences:
- When the number \( x \) is divided by 9, the remainder is 8.
- When the quotient obtained from dividing \( x \) by 9 is divided by 11, the remainder is 9.
- When the quotient obtained from the previous step is divided by 13, the remainder is 8.
2. Express the problem using congruences:
- \( x \equiv 8 \ (\text{mod} \ 9) \)
- Let \( a \) be the quotient when \( x \) is divided by 9. Thus, \( a \equiv 9 \ (\text{mod} \ 11) \).
- Let \( b \) be the quotient when \( a \) is divided by 11. Thus, \( b \equiv 8 \ (\text{mod} \ 13) \).
3. Express \( x \) in terms of \( a \) and \( b \):
- Starting from \( x \equiv 8 \ (\text{mod} 9) \), write \( x \) as:
[tex]\[ x = 9a + 8 \][/tex]
- Since \( a \equiv 9 \ (\text{mod} \ 11) \), write \( a \) as:
[tex]\[ a = 11b + 9 \][/tex]
4. Substitute \( a \) into the expression for \( x \):
- Substituting \( a \) into \( x = 9a + 8 \):
[tex]\[ x = 9(11b + 9) + 8 \][/tex]
- Simplify inside the parentheses:
[tex]\[ x = 99b + 81 + 8 \][/tex]
- Combine the constants:
[tex]\[ x = 99b + 89 \][/tex]
5. Express \( b \) in terms of the given remainder and modulus 13:
- Since \( b \equiv 8 \ (\text{mod} 13) \), write \( b \) as:
[tex]\[ b = 13c + 8 \][/tex]
6. Substitute \( b \) into the expression for \( x \):
- Substituting \( b \) into \( x = 99b + 89 \):
[tex]\[ x = 99(13c + 8) + 89 \][/tex]
- Simplify inside the parentheses:
[tex]\[ x = 1287c + 792 + 89 \][/tex]
- Combine the constants:
[tex]\[ x = 1287c + 881 \][/tex]
7. Determine the remainder when \( x \) is divided by 1287:
- From the final equation, \( x = 1287c + 881 \), the remainder when \( x \) is divided by 1287 is:
[tex]\[ \boxed{881} \][/tex]
So, the remainder when the given number is divided by 1287 is 881.
1. Identify the given congruences:
- When the number \( x \) is divided by 9, the remainder is 8.
- When the quotient obtained from dividing \( x \) by 9 is divided by 11, the remainder is 9.
- When the quotient obtained from the previous step is divided by 13, the remainder is 8.
2. Express the problem using congruences:
- \( x \equiv 8 \ (\text{mod} \ 9) \)
- Let \( a \) be the quotient when \( x \) is divided by 9. Thus, \( a \equiv 9 \ (\text{mod} \ 11) \).
- Let \( b \) be the quotient when \( a \) is divided by 11. Thus, \( b \equiv 8 \ (\text{mod} \ 13) \).
3. Express \( x \) in terms of \( a \) and \( b \):
- Starting from \( x \equiv 8 \ (\text{mod} 9) \), write \( x \) as:
[tex]\[ x = 9a + 8 \][/tex]
- Since \( a \equiv 9 \ (\text{mod} \ 11) \), write \( a \) as:
[tex]\[ a = 11b + 9 \][/tex]
4. Substitute \( a \) into the expression for \( x \):
- Substituting \( a \) into \( x = 9a + 8 \):
[tex]\[ x = 9(11b + 9) + 8 \][/tex]
- Simplify inside the parentheses:
[tex]\[ x = 99b + 81 + 8 \][/tex]
- Combine the constants:
[tex]\[ x = 99b + 89 \][/tex]
5. Express \( b \) in terms of the given remainder and modulus 13:
- Since \( b \equiv 8 \ (\text{mod} 13) \), write \( b \) as:
[tex]\[ b = 13c + 8 \][/tex]
6. Substitute \( b \) into the expression for \( x \):
- Substituting \( b \) into \( x = 99b + 89 \):
[tex]\[ x = 99(13c + 8) + 89 \][/tex]
- Simplify inside the parentheses:
[tex]\[ x = 1287c + 792 + 89 \][/tex]
- Combine the constants:
[tex]\[ x = 1287c + 881 \][/tex]
7. Determine the remainder when \( x \) is divided by 1287:
- From the final equation, \( x = 1287c + 881 \), the remainder when \( x \) is divided by 1287 is:
[tex]\[ \boxed{881} \][/tex]
So, the remainder when the given number is divided by 1287 is 881.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.