Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

5) Solve using the Matrix method:
[tex]\[ 2x + y = 3 \][/tex]
[tex]\[ 3x + 2y = 2 \][/tex]

6) A square [tex]\( PQRS \)[/tex] has a vertex [tex]\( P(2,3) \)[/tex] and the equation of the diagonal [tex]\( PR \)[/tex] is [tex]\( x - 3y = 2 \)[/tex]. Find the equations of the two sides of the square through [tex]\( P \)[/tex].


Sagot :

Sure, let's solve each part step-by-step.

Problem 5: Solve by Matrix method:
Given the system of equations:
[tex]\[ 2x + y = 3 \][/tex]
[tex]\[ 3x + 2y = 2 \][/tex]

1. Form the coefficient matrix \( A \) and the constant matrix \( B \):
[tex]\[ A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \][/tex]

2. Solve the system \( AX = B \) for \( X \):
[tex]\[ X = A^{-1}B \][/tex]

Using matrix methods, the solution for \( x \) and \( y \) is:
[tex]\[ x = 4, \quad y = -5 \][/tex]

So, the solution to the system is \(( x, y ) = ( 4, -5 )\).

Problem 6:

Given, a square \( PQRS \) has a vertex \( P(2,3) \) and the equation of the diagonal \( PR \) is:
[tex]\[ x - 3y = 2 \][/tex]

1. Determine the slope of diagonal \( PR \):
Rewrite the equation in slope-intercept form:
[tex]\[ y = \frac{1}{3}x - \frac{2}{3} \][/tex]
The slope \( m \) of \( PR \) is \( \frac{1}{3} \).

2. Find the slope of the sides of the square:
The sides of the square are perpendicular to the diagonal \( PR \). The slope of a line perpendicular to \( PR \) is the negative reciprocal of \( \frac{1}{3} \), which is \( -3 \).

3. Equations of the sides through \( P(2,3) \):

- Equation of Side 1:
One side passes through \( P(2,3) \) with the slope \( -3 \).
[tex]\[ y - 3 = -3(x - 2) \][/tex]
Simplify the equation:
[tex]\[ y - 3 = -3x + 6 \implies 3x + y = 9 \][/tex]
Thus, the equation of Side 1 is:
[tex]\[ 3x + y = 9 \][/tex]

- Equation of Side 2:
Another side through \( P \) is perpendicular to the side whose equation we just found, so its slope is the negative reciprocal of \( -3 \), which is \( \frac{1}{3} \).
[tex]\[ y - 3 = \frac{1}{3}(x - 2) \][/tex]
Simplify the equation:
[tex]\[ y - 3 = \frac{1}{3}x - \frac{2}{3} \implies 3y - 9 = x - 2 \implies x - 3y = -7 \][/tex]
Thus, the equation of Side 2 is:
[tex]\[ x - 3y = -7 \][/tex]

So, the equations of the two sides of the square through \( P(2,3) \) are:
[tex]\[ 3x + y = 9 \][/tex]
[tex]\[ x - 3y = -7 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.