Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the eigenvalues and the eigenvector corresponding to the largest eigenvalue for the given matrix \( A \), follow these steps:
1. Define the matrix \( A \):
[tex]\[ A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \][/tex]
2. Compute the characteristic polynomial:
The characteristic polynomial is obtained by solving \(\det(A - \lambda I) = 0\), where \(I\) is the identity matrix and \(\lambda\) represents the eigenvalues.
3. Solve for the eigenvalues:
By solving the characteristic polynomial equation, we find the eigenvalues. The eigenvalues for this matrix are:
[tex]\[ \lambda_1 = -2, \quad \lambda_2 = 3, \quad \lambda_3 = 6 \][/tex]
4. Identify the largest eigenvalue:
Among the eigenvalues \(-2\), \(3\), and \(6\), the largest eigenvalue is \(6\).
5. Find the eigenvector corresponding to the largest eigenvalue:
To find the eigenvector corresponding to the largest eigenvalue (\(\lambda = 6\)), substitute \(\lambda = 6\) into the equation:
[tex]\[ (A - 6I) \mathbf{v} = 0 \][/tex]
This simplifies into solving the system of linear equations represented by:
[tex]\[ \begin{pmatrix} 1 - 6 & 1 & 3 \\ 1 & 5 - 6 & 1 \\ 3 & 1 & 1 - 6 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \][/tex]
Simplifying the matrix:
[tex]\[ \begin{pmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \][/tex]
6. Solve for the eigenvector components:
Solving this system leads us to find the eigenvector corresponding to \(\lambda = 6\). The eigenvector for the largest eigenvalue \(\lambda = 6\) is:
[tex]\[ \mathbf{v} = \begin{pmatrix} -0.40824829 \\ -0.81649658 \\ -0.40824829 \end{pmatrix} \][/tex]
So, to summarize:
- The eigenvalues of the matrix \(A\) are:
[tex]\[ \{ -2, 3, 6 \} \][/tex]
- The largest eigenvalue is:
[tex]\[ 6 \][/tex]
- The eigenvector corresponding to the largest eigenvalue (\(\lambda = 6\)) is:
[tex]\[ \begin{pmatrix} -0.40824829 \\ -0.81649658 \\ -0.40824829 \end{pmatrix} \][/tex]
1. Define the matrix \( A \):
[tex]\[ A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \][/tex]
2. Compute the characteristic polynomial:
The characteristic polynomial is obtained by solving \(\det(A - \lambda I) = 0\), where \(I\) is the identity matrix and \(\lambda\) represents the eigenvalues.
3. Solve for the eigenvalues:
By solving the characteristic polynomial equation, we find the eigenvalues. The eigenvalues for this matrix are:
[tex]\[ \lambda_1 = -2, \quad \lambda_2 = 3, \quad \lambda_3 = 6 \][/tex]
4. Identify the largest eigenvalue:
Among the eigenvalues \(-2\), \(3\), and \(6\), the largest eigenvalue is \(6\).
5. Find the eigenvector corresponding to the largest eigenvalue:
To find the eigenvector corresponding to the largest eigenvalue (\(\lambda = 6\)), substitute \(\lambda = 6\) into the equation:
[tex]\[ (A - 6I) \mathbf{v} = 0 \][/tex]
This simplifies into solving the system of linear equations represented by:
[tex]\[ \begin{pmatrix} 1 - 6 & 1 & 3 \\ 1 & 5 - 6 & 1 \\ 3 & 1 & 1 - 6 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \][/tex]
Simplifying the matrix:
[tex]\[ \begin{pmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \][/tex]
6. Solve for the eigenvector components:
Solving this system leads us to find the eigenvector corresponding to \(\lambda = 6\). The eigenvector for the largest eigenvalue \(\lambda = 6\) is:
[tex]\[ \mathbf{v} = \begin{pmatrix} -0.40824829 \\ -0.81649658 \\ -0.40824829 \end{pmatrix} \][/tex]
So, to summarize:
- The eigenvalues of the matrix \(A\) are:
[tex]\[ \{ -2, 3, 6 \} \][/tex]
- The largest eigenvalue is:
[tex]\[ 6 \][/tex]
- The eigenvector corresponding to the largest eigenvalue (\(\lambda = 6\)) is:
[tex]\[ \begin{pmatrix} -0.40824829 \\ -0.81649658 \\ -0.40824829 \end{pmatrix} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.