Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Use the zero product property to find the solutions to the equation [tex]6x^2 - 5x = 56[/tex].

A. [tex]x = -8[/tex] or [tex]x = \frac{7}{6}[/tex]
B. [tex]x = -\frac{8}{3}[/tex] or [tex]x = \frac{7}{2}[/tex]
C. [tex]x = -\frac{1}{2}[/tex] or [tex]x = \frac{56}{3}[/tex]
D. [tex]x = -\frac{3}{7}[/tex] or [tex]x = \frac{2}{3}[/tex]

Sagot :

To solve the equation \(6x^2 - 5x = 56\) using the zero product property, we first need to bring all terms to one side of the equation to set it to zero:

[tex]\[ 6x^2 - 5x - 56 = 0 \][/tex]

Next, we need to factorize the quadratic equation \(6x^2 - 5x - 56 = 0\). Factoring a quadratic in the form \(ax^2 + bx + c = 0\) involves finding two binomials \((mx + n)(px + q)\) such that their product gives back the quadratic expression.

However, this equation, \(6x^2 - 5x - 56\), does not factor easily by simple inspection, so we should typically use the quadratic formula instead:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

where \(a = 6\), \(b = -5\), and \(c = -56\). Plugging these values into the quadratic formula gives:

[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 6 \cdot (-56)}}{2 \cdot 6} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{25 + 1344}}{12} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{1369}}{12} \][/tex]
[tex]\[ x = \frac{5 \pm 37}{12} \][/tex]

This results in two possible solutions:

1. \( x = \frac{5 + 37}{12} = \frac{42}{12} = 3.5 \)
2. \( x = \frac{5 - 37}{12} = \frac{-32}{12} = -\frac{8}{3} \)

So the solutions to the equation \(6x^2 - 5x = 56\) are:

[tex]\[ x = -\frac{8}{3} \quad \text{or} \quad x = 3.5 \][/tex]

Among the given options, the correct solution is:

[tex]\[ x = -\frac{8}{3} \quad \text{or} \quad x = \frac{7}{2} \][/tex]

Note that \(3.5\) can be written as a fraction \( \frac{7}{2}\).

Thus, the correct pair among the given choices is:

[tex]\[ x = -\frac{8}{3} \quad \text{or} \quad x = \frac{7}{2} \][/tex]