Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To express the repeating decimal \(0.1543715437\ldots \) as a fraction in \( \frac{p}{q} \) form, follow these steps:
1. Identify the repeating decimal: The given repeating decimal is \( 0.1543715437\ldots \).
2. Set up an equation for the repeating decimal:
Let \( x = 0.1543715437\ldots \).
3. Express the repeating decimal as a fraction: The fractional representation of \( x \) must account for its repeating nature.
4. Find a common expansion form: We need to stop the repeating part. Note that the decimal repeats after 10 digits in this case. This helps in moving the decimal point to convert it into a fraction.
5. Create an equation to solve for \( x \):
By multiplying both sides of \( x = 0.1543715437\ldots \) by \( 10^{10} \) (since the period of the repeating decimal is 10 digits), we get:
[tex]\[ 10^{10} \times x = 1543715437.1543715437\ldots \][/tex]
6. Subtract the original equation from this new equation:
[tex]\[ 10^{10}x - x = 1543715437.1543715437\ldots - 0.1543715437\ldots \][/tex]
Simplify the subtraction:
[tex]\[ 9999999999x = 1543715437 \][/tex]
7. Solve for \( x \):
[tex]\[ x = \frac{1543715437}{9999999999} \][/tex]
8. Simplify the fraction:
Divide the numerator and the denominator by their greatest common divisor (GCD). In this case:
[tex]\[ \frac{1543715437}{9999999999} = \frac{1543715437}{10000000000} \][/tex]
Since 9999999999 is assumed to be a prime factor here without extra detail needed to correct input assumptions on how precision was approximate.
Thus, the fraction form of \( 0.1543715437\ldots \) is:
[tex]\[ \frac{1543715437}{10000000000} \][/tex]
So, the repeating decimal \( 0.1543715437\ldots \) can be expressed as the fraction:
[tex]\[ \frac{1543715437}{10000000000} \][/tex]
This fraction is already in its simplest form.
1. Identify the repeating decimal: The given repeating decimal is \( 0.1543715437\ldots \).
2. Set up an equation for the repeating decimal:
Let \( x = 0.1543715437\ldots \).
3. Express the repeating decimal as a fraction: The fractional representation of \( x \) must account for its repeating nature.
4. Find a common expansion form: We need to stop the repeating part. Note that the decimal repeats after 10 digits in this case. This helps in moving the decimal point to convert it into a fraction.
5. Create an equation to solve for \( x \):
By multiplying both sides of \( x = 0.1543715437\ldots \) by \( 10^{10} \) (since the period of the repeating decimal is 10 digits), we get:
[tex]\[ 10^{10} \times x = 1543715437.1543715437\ldots \][/tex]
6. Subtract the original equation from this new equation:
[tex]\[ 10^{10}x - x = 1543715437.1543715437\ldots - 0.1543715437\ldots \][/tex]
Simplify the subtraction:
[tex]\[ 9999999999x = 1543715437 \][/tex]
7. Solve for \( x \):
[tex]\[ x = \frac{1543715437}{9999999999} \][/tex]
8. Simplify the fraction:
Divide the numerator and the denominator by their greatest common divisor (GCD). In this case:
[tex]\[ \frac{1543715437}{9999999999} = \frac{1543715437}{10000000000} \][/tex]
Since 9999999999 is assumed to be a prime factor here without extra detail needed to correct input assumptions on how precision was approximate.
Thus, the fraction form of \( 0.1543715437\ldots \) is:
[tex]\[ \frac{1543715437}{10000000000} \][/tex]
So, the repeating decimal \( 0.1543715437\ldots \) can be expressed as the fraction:
[tex]\[ \frac{1543715437}{10000000000} \][/tex]
This fraction is already in its simplest form.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.