Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What is the pre-image of vertex [tex]A^{\prime}[/tex] if the rule that created the image is [tex]r_{y\text{-axis}}: (x, y) \rightarrow (-x, y)[/tex]?

A. [tex]A(-4, 2)[/tex]
B. [tex]A(-2, -4)[/tex]
C. [tex]A(2, 4)[/tex]
D. [tex]A(4, -2)[/tex]


Sagot :

To determine the pre-images of the given vertices \( A \) under the rule of reflection across the y-axis, which is given by the transformation \((x, y) \rightarrow (-x, y)\), we'll work through each vertex step by step.

1. For the vertex \( A(-4, 2) \):

- Given the transformation rule \((x, y) \rightarrow (-x, y)\), we need to find the original point that underwent this transformation to become \( (-4, 2) \).
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -4\) and \( y = 2\).
- Solving for \( x \), we find \( x = 4 \).
- Therefore, the pre-image of \( A(-4, 2) \) is \( (4, 2) \).

2. For the vertex \( A(-2, -4) \):

- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -2\) and \( y = -4\).
- Solving for \( x \), we find \( x = 2 \).
- Therefore, the pre-image of \( A(-2, -4) \) is \( (2, -4) \).

3. For the vertex \( A(2, 4) \):

- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 2\) and \( y = 4\).
- Solving for \( x \), we find \( x = -2 \).
- Therefore, the pre-image of \( A(2, 4) \) is \( (-2, 4) \).

4. For the vertex \( A(4, -2) \):

- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 4\) and \( y = -2\).
- Solving for \( x \), we find \( x = -4 \).
- Therefore, the pre-image of \( A(4, -2) \) is \( (-4, -2) \).

In summary, the pre-images are:
- The pre-image of \( A(-4, 2) \) is \( (4, 2) \).
- The pre-image of \( A(-2, -4) \) is \( (2, -4) \).
- The pre-image of \( A(2, 4) \) is \( (-2, 4) \).
- The pre-image of \( A(4, -2) \) is \( (-4, -2) \).

Hence, the pre-images of the given vertices are [tex]\( (4, 2) \)[/tex], [tex]\( (2, -4) \)[/tex], [tex]\( (-2, 4) \)[/tex], and [tex]\( (-4, -2) \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.