At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the pre-images of the given vertices \( A \) under the rule of reflection across the y-axis, which is given by the transformation \((x, y) \rightarrow (-x, y)\), we'll work through each vertex step by step.
1. For the vertex \( A(-4, 2) \):
- Given the transformation rule \((x, y) \rightarrow (-x, y)\), we need to find the original point that underwent this transformation to become \( (-4, 2) \).
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -4\) and \( y = 2\).
- Solving for \( x \), we find \( x = 4 \).
- Therefore, the pre-image of \( A(-4, 2) \) is \( (4, 2) \).
2. For the vertex \( A(-2, -4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -2\) and \( y = -4\).
- Solving for \( x \), we find \( x = 2 \).
- Therefore, the pre-image of \( A(-2, -4) \) is \( (2, -4) \).
3. For the vertex \( A(2, 4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 2\) and \( y = 4\).
- Solving for \( x \), we find \( x = -2 \).
- Therefore, the pre-image of \( A(2, 4) \) is \( (-2, 4) \).
4. For the vertex \( A(4, -2) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 4\) and \( y = -2\).
- Solving for \( x \), we find \( x = -4 \).
- Therefore, the pre-image of \( A(4, -2) \) is \( (-4, -2) \).
In summary, the pre-images are:
- The pre-image of \( A(-4, 2) \) is \( (4, 2) \).
- The pre-image of \( A(-2, -4) \) is \( (2, -4) \).
- The pre-image of \( A(2, 4) \) is \( (-2, 4) \).
- The pre-image of \( A(4, -2) \) is \( (-4, -2) \).
Hence, the pre-images of the given vertices are [tex]\( (4, 2) \)[/tex], [tex]\( (2, -4) \)[/tex], [tex]\( (-2, 4) \)[/tex], and [tex]\( (-4, -2) \)[/tex].
1. For the vertex \( A(-4, 2) \):
- Given the transformation rule \((x, y) \rightarrow (-x, y)\), we need to find the original point that underwent this transformation to become \( (-4, 2) \).
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -4\) and \( y = 2\).
- Solving for \( x \), we find \( x = 4 \).
- Therefore, the pre-image of \( A(-4, 2) \) is \( (4, 2) \).
2. For the vertex \( A(-2, -4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -2\) and \( y = -4\).
- Solving for \( x \), we find \( x = 2 \).
- Therefore, the pre-image of \( A(-2, -4) \) is \( (2, -4) \).
3. For the vertex \( A(2, 4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 2\) and \( y = 4\).
- Solving for \( x \), we find \( x = -2 \).
- Therefore, the pre-image of \( A(2, 4) \) is \( (-2, 4) \).
4. For the vertex \( A(4, -2) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 4\) and \( y = -2\).
- Solving for \( x \), we find \( x = -4 \).
- Therefore, the pre-image of \( A(4, -2) \) is \( (-4, -2) \).
In summary, the pre-images are:
- The pre-image of \( A(-4, 2) \) is \( (4, 2) \).
- The pre-image of \( A(-2, -4) \) is \( (2, -4) \).
- The pre-image of \( A(2, 4) \) is \( (-2, 4) \).
- The pre-image of \( A(4, -2) \) is \( (-4, -2) \).
Hence, the pre-images of the given vertices are [tex]\( (4, 2) \)[/tex], [tex]\( (2, -4) \)[/tex], [tex]\( (-2, 4) \)[/tex], and [tex]\( (-4, -2) \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.