Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the area of an equilateral triangle with a given perimeter of 24 inches, we'll follow these steps:
1. Determine the side length of the equilateral triangle:
- Since the perimeter of an equilateral triangle is the sum of the lengths of all three equal sides, we can find the side length by dividing the perimeter by 3.
[tex]\[ \text{Side length} = \frac{\text{Perimeter}}{3} = \frac{24}{3} = 8 \text{ inches} \][/tex]
2. Use the side length to find the area:
- The formula for the area of an equilateral triangle is given by:
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times \text{side length}^2 \][/tex]
- Plugging in the side length we determined earlier:
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times 8^2 \][/tex]
- First, calculate \(8^2\):
[tex]\[ 8^2 = 64 \][/tex]
- Then multiply by \(\frac{\sqrt{3}}{4}\):
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times 64 \approx 27.712812921102035 \text{ square inches} \][/tex]
3. Round the area to the nearest tenth:
- The area calculated above is approximately \(27.712812921102035\) square inches.
- Rounding to the nearest tenth:
[tex]\[ 27.712812921102035 \approx 27.7 \text{ square inches} \][/tex]
Thus, the area of the equilateral triangle, rounded to the nearest tenth of square inch, is:
[tex]\[ \text{Area} = 27.7 \text{ square inches} \][/tex]
1. Determine the side length of the equilateral triangle:
- Since the perimeter of an equilateral triangle is the sum of the lengths of all three equal sides, we can find the side length by dividing the perimeter by 3.
[tex]\[ \text{Side length} = \frac{\text{Perimeter}}{3} = \frac{24}{3} = 8 \text{ inches} \][/tex]
2. Use the side length to find the area:
- The formula for the area of an equilateral triangle is given by:
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times \text{side length}^2 \][/tex]
- Plugging in the side length we determined earlier:
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times 8^2 \][/tex]
- First, calculate \(8^2\):
[tex]\[ 8^2 = 64 \][/tex]
- Then multiply by \(\frac{\sqrt{3}}{4}\):
[tex]\[ \text{Area} = \frac{\sqrt{3}}{4} \times 64 \approx 27.712812921102035 \text{ square inches} \][/tex]
3. Round the area to the nearest tenth:
- The area calculated above is approximately \(27.712812921102035\) square inches.
- Rounding to the nearest tenth:
[tex]\[ 27.712812921102035 \approx 27.7 \text{ square inches} \][/tex]
Thus, the area of the equilateral triangle, rounded to the nearest tenth of square inch, is:
[tex]\[ \text{Area} = 27.7 \text{ square inches} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.