Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

In the redox reaction below, which is the reducing agent?

[tex]\[ \text{MnO}_2(s) + 4 \text{H}^+(aq) + 2 \text{Cl}^-(aq) \longrightarrow \text{Mn}^{2+}(aq) + 2 \text{H}_2\text{O}(l) + \text{Cl}_2(g) \][/tex]


Sagot :

To determine the reducing agent in the redox reaction:

[tex]\[ \text{MnO}_2(s) + 4 \text{H}^+(aq) + 2\text{Cl}^-(aq) \longrightarrow \text{Mn}^{2+}(aq) + 2 \text{H}_2\text{O}(l) + \text{Cl}_2(g) \][/tex]

we follow these steps:

1. Identify the oxidation states of the elements involved in the reaction:

- Manganese (Mn) in \(\text{MnO}_2\): The oxidation state of oxygen (O) is -2. Since there are two oxygens, the total oxidation state for oxygen is \(-2 \times 2 = -4\). To balance this in \(\text{MnO}_2\), manganese must have an oxidation state of +4.
- Manganese (Mn) in \(\text{Mn}^{2+}(aq)\): The oxidation state is +2.

- Chlorine (Cl) in \(\text{Cl}^-\): The oxidation state is -1.
- Chlorine (Cl) in \(\text{Cl}_2(g)\): The oxidation state is 0 since it is in its elemental form.

2. Determine the changes in oxidation states:

- Manganese (Mn):
- Initial state: +4 (in \(\text{MnO}_2\))
- Final state: +2 (in \(\text{Mn}^{2+}\))
- Change: +4 to +2 (Mn is reduced, meaning it gains electrons).

- Chlorine (Cl):
- Initial state: -1 (in \(\text{Cl}^-\))
- Final state: 0 (in \(\text{Cl}_2\))
- Change: -1 to 0 (Cl is oxidized, meaning it loses electrons).

3. Identify which substance is oxidized:

Chlorine (\(\text{Cl}^-\)) is oxidized because it goes from an oxidation state of -1 in \(\text{Cl}^-\) to 0 in \(\text{Cl}_2\).

4. Determine the reducing agent:

The reducing agent is the substance that is oxidized in the reaction because it donates electrons to another substance. In this case, \(\text{Cl}^-\) is oxidized to \(\text{Cl}_2\), thus it acts as the reducing agent.

Therefore, the reducing agent in this reaction is [tex]\(\text{Cl}^-\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.