Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the length of one leg of a 45°-45°-90° triangle when the hypotenuse measures \( 22 \sqrt{2} \) units, follow these steps:
1. Understand the Properties of a 45°-45°-90° Triangle:
- In a 45°-45°-90° triangle, the sides are in a specific ratio. If each leg is of length \( x \), the hypotenuse will be \( x\sqrt{2} \). This is because the legs are congruent (equal) and the hypotenuse is found using the Pythagorean theorem: \( (leg)^2 + (leg)^2 = (hypotenuse)^2 \).
2. Set Up the Ratios:
- Let the length of one leg be \( x \). Then, according to the properties of the triangle:
[tex]\[ \text{Hypotenuse} = x \sqrt{2} \][/tex]
- We are given that the hypotenuse is \( 22 \sqrt{2} \).
3. Solve for \( x \):
- Replace the hypotenuse in the equation with the given value:
[tex]\[ 22 \sqrt{2} = x \sqrt{2} \][/tex]
- Divide both sides by \( \sqrt{2} \) to isolate \( x \):
[tex]\[ x = \frac{22 \sqrt{2}}{\sqrt{2}} \][/tex]
- Simplify the expression. Since \( \sqrt{2} \) in the numerator and denominator cancels out:
[tex]\[ x = 22 \][/tex]
4. Conclusion:
- The length of one leg of the triangle is [tex]\( \boxed{22 \text{ units}} \)[/tex].
1. Understand the Properties of a 45°-45°-90° Triangle:
- In a 45°-45°-90° triangle, the sides are in a specific ratio. If each leg is of length \( x \), the hypotenuse will be \( x\sqrt{2} \). This is because the legs are congruent (equal) and the hypotenuse is found using the Pythagorean theorem: \( (leg)^2 + (leg)^2 = (hypotenuse)^2 \).
2. Set Up the Ratios:
- Let the length of one leg be \( x \). Then, according to the properties of the triangle:
[tex]\[ \text{Hypotenuse} = x \sqrt{2} \][/tex]
- We are given that the hypotenuse is \( 22 \sqrt{2} \).
3. Solve for \( x \):
- Replace the hypotenuse in the equation with the given value:
[tex]\[ 22 \sqrt{2} = x \sqrt{2} \][/tex]
- Divide both sides by \( \sqrt{2} \) to isolate \( x \):
[tex]\[ x = \frac{22 \sqrt{2}}{\sqrt{2}} \][/tex]
- Simplify the expression. Since \( \sqrt{2} \) in the numerator and denominator cancels out:
[tex]\[ x = 22 \][/tex]
4. Conclusion:
- The length of one leg of the triangle is [tex]\( \boxed{22 \text{ units}} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.