Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To express \(\frac{3x - 1}{3x^2 + 4x + 1}\) in partial fractions, we can follow these steps:
1. Factor the Denominator:
First, we factor the denominator \(3x^2 + 4x + 1\). We look for two numbers whose product is \(3 \cdot 1 = 3\) and whose sum is \(4\). These numbers are \(3\) and \(1\). Therefore, the quadratic can be factored as:
[tex]\[ 3x^2 + 4x + 1 = (3x + 1)(x + 1) \][/tex]
2. Set Up the Partial Fractions:
Now we express \(\frac{3x - 1}{3x^2 + 4x + 1}\) as a sum of partial fractions. The denominator factors into \((3x + 1)(x + 1)\), so we can write:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{A}{3x + 1} + \frac{B}{x + 1} \][/tex]
where \(A\) and \(B\) are constants to be determined.
3. Combine the Terms:
To find \(A\) and \(B\), we combine the fractions on the right-hand side over the common denominator:
[tex]\[ \frac{A}{3x + 1} + \frac{B}{x + 1} = \frac{A(x + 1) + B(3x + 1)}{(3x + 1)(x + 1)} \][/tex]
4. Equate the Numerators:
The denominators are now the same, so we equate the numerators:
[tex]\[ 3x - 1 = A(x + 1) + B(3x + 1) \][/tex]
Expanding the right-hand side gives:
[tex]\[ 3x - 1 = Ax + A + 3Bx + B \][/tex]
[tex]\[ 3x - 1 = (A + 3B)x + (A + B) \][/tex]
5. Solve for \(A\) and \(B\):
We now equate the coefficients from both sides of the equation:
[tex]\[ 3 = A + 3B \quad \text{(coefficient of } x\text{)} \][/tex]
[tex]\[ -1 = A + B \quad \text{(constant term)} \][/tex]
We solve this system of equations:
- From the second equation: \(A + B = -1\)
- Substitute \( A = -1 - B \) into the first equation:
[tex]\[ 3 = (-1 - B) + 3B \][/tex]
[tex]\[ 3 = -1 + 2B \][/tex]
[tex]\[ 4 = 2B \][/tex]
[tex]\[ B = 2 \][/tex]
- Substitute \( B = 2 \) back into \( A + B = -1 \):
[tex]\[ A + 2 = -1 \][/tex]
[tex]\[ A = -3 \][/tex]
6. Write the Partial Fraction Decomposition:
With \(A = -3\) and \(B = 2\), we can write the partial fractions as:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{A}{3x + 1} + \frac{B}{x + 1} = \frac{-3}{3x + 1} + \frac{2}{x + 1} \][/tex]
Thus, the partial fraction decomposition of \(\frac{3x - 1}{3x^2 + 4x + 1}\) is:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{-3}{3x + 1} + \frac{2}{x + 1} \][/tex]
1. Factor the Denominator:
First, we factor the denominator \(3x^2 + 4x + 1\). We look for two numbers whose product is \(3 \cdot 1 = 3\) and whose sum is \(4\). These numbers are \(3\) and \(1\). Therefore, the quadratic can be factored as:
[tex]\[ 3x^2 + 4x + 1 = (3x + 1)(x + 1) \][/tex]
2. Set Up the Partial Fractions:
Now we express \(\frac{3x - 1}{3x^2 + 4x + 1}\) as a sum of partial fractions. The denominator factors into \((3x + 1)(x + 1)\), so we can write:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{A}{3x + 1} + \frac{B}{x + 1} \][/tex]
where \(A\) and \(B\) are constants to be determined.
3. Combine the Terms:
To find \(A\) and \(B\), we combine the fractions on the right-hand side over the common denominator:
[tex]\[ \frac{A}{3x + 1} + \frac{B}{x + 1} = \frac{A(x + 1) + B(3x + 1)}{(3x + 1)(x + 1)} \][/tex]
4. Equate the Numerators:
The denominators are now the same, so we equate the numerators:
[tex]\[ 3x - 1 = A(x + 1) + B(3x + 1) \][/tex]
Expanding the right-hand side gives:
[tex]\[ 3x - 1 = Ax + A + 3Bx + B \][/tex]
[tex]\[ 3x - 1 = (A + 3B)x + (A + B) \][/tex]
5. Solve for \(A\) and \(B\):
We now equate the coefficients from both sides of the equation:
[tex]\[ 3 = A + 3B \quad \text{(coefficient of } x\text{)} \][/tex]
[tex]\[ -1 = A + B \quad \text{(constant term)} \][/tex]
We solve this system of equations:
- From the second equation: \(A + B = -1\)
- Substitute \( A = -1 - B \) into the first equation:
[tex]\[ 3 = (-1 - B) + 3B \][/tex]
[tex]\[ 3 = -1 + 2B \][/tex]
[tex]\[ 4 = 2B \][/tex]
[tex]\[ B = 2 \][/tex]
- Substitute \( B = 2 \) back into \( A + B = -1 \):
[tex]\[ A + 2 = -1 \][/tex]
[tex]\[ A = -3 \][/tex]
6. Write the Partial Fraction Decomposition:
With \(A = -3\) and \(B = 2\), we can write the partial fractions as:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{A}{3x + 1} + \frac{B}{x + 1} = \frac{-3}{3x + 1} + \frac{2}{x + 1} \][/tex]
Thus, the partial fraction decomposition of \(\frac{3x - 1}{3x^2 + 4x + 1}\) is:
[tex]\[ \frac{3x - 1}{3x^2 + 4x + 1} = \frac{-3}{3x + 1} + \frac{2}{x + 1} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.