At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Given: a ∥ b and ∠1 ≅ ∠3
Prove: e ∥ f

Horizontal and parallel lines e and f are intersected by parallel lines a and b. At the intersection of lines a and e, the bottom left angle is angle 1. At the intersection of lines b and e, the uppercase right angle is angle 2. At the intersection of lines f and b, the bottom left angle is angle 3 and the bottom right angle is angle 4.

We know that angle 1 is congruent to angle 3 and that line a is parallel to line b because they are given. We see that __________ by the alternate exterior angles theorem. Therefore, angle 2 is congruent to angle 3 by the transitive property. So, we can conclude that lines e and f are parallel by the converse alternate exterior angles theorem.

Which information is missing in the paragraph proof?

∠2 ≅ ∠4
∠1 ≅ ∠2
∠2 ≅ ∠3
∠1 ≅ ∠4
)


Sagot :

Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.