Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve this problem step-by-step.
1. Understand the deck composition:
- A standard deck contains 52 cards.
- There are 26 black cards (13 spades and 13 clubs).
- There are 13 hearts among the red cards.
2. First event: Drawing a black card:
- The number of black cards is 26 out of a total of 52 cards.
- The probability \( P(\text{Black card first}) \) is calculated as follows:
[tex]\[ P(\text{Black card first}) = \frac{\text{Number of black cards}}{\text{Total number of cards}} = \frac{26}{52} = \frac{1}{2} \][/tex]
3. Second event: Drawing a heart:
- Since the card is replaced, the total number of cards remains 52, and the number of hearts remains 13.
- The probability \( P(\text{Heart second}) \) is calculated as follows:
[tex]\[ P(\text{Heart second}) = \frac{\text{Number of hearts}}{\text{Total number of cards}} = \frac{13}{52} = \frac{1}{4} \][/tex]
4. Combined probability of both events:
- The events are independent because the first card is replaced before drawing the second card.
- The combined probability \( P(\text{Black card first and Heart second}) \) is the product of the individual probabilities:
[tex]\[ P(\text{Black card first and Heart second}) = P(\text{Black card first}) \times P(\text{Heart second}) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \][/tex]
Therefore, the probability that the first card chosen is black and the second card is a heart is:
[tex]\[ \boxed{\frac{1}{8}} \][/tex]
1. Understand the deck composition:
- A standard deck contains 52 cards.
- There are 26 black cards (13 spades and 13 clubs).
- There are 13 hearts among the red cards.
2. First event: Drawing a black card:
- The number of black cards is 26 out of a total of 52 cards.
- The probability \( P(\text{Black card first}) \) is calculated as follows:
[tex]\[ P(\text{Black card first}) = \frac{\text{Number of black cards}}{\text{Total number of cards}} = \frac{26}{52} = \frac{1}{2} \][/tex]
3. Second event: Drawing a heart:
- Since the card is replaced, the total number of cards remains 52, and the number of hearts remains 13.
- The probability \( P(\text{Heart second}) \) is calculated as follows:
[tex]\[ P(\text{Heart second}) = \frac{\text{Number of hearts}}{\text{Total number of cards}} = \frac{13}{52} = \frac{1}{4} \][/tex]
4. Combined probability of both events:
- The events are independent because the first card is replaced before drawing the second card.
- The combined probability \( P(\text{Black card first and Heart second}) \) is the product of the individual probabilities:
[tex]\[ P(\text{Black card first and Heart second}) = P(\text{Black card first}) \times P(\text{Heart second}) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \][/tex]
Therefore, the probability that the first card chosen is black and the second card is a heart is:
[tex]\[ \boxed{\frac{1}{8}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.