Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the pre-image of a point under the reflection rule \( r_{y=-x} \), let's carefully analyze the reflection over the line \( y = -x \).
When a point \((x, y)\) is reflected over the line \( y = -x \):
1. The x-coordinate of the new point will be the negative of the y-coordinate of the original point.
2. The y-coordinate of the new point will be the negative of the x-coordinate of the original point.
Given that the reflected point (image) is \((-4, 9)\), we need to determine the coordinates of the original point (pre-image) that produced this reflection.
Let's solve this step-by-step:
1. Let's denote the pre-image coordinates by \((x, y)\).
2. According to the reflection rule \( r_{y=-x} \), the pre-image point \((x, y)\) will transform as:
[tex]\[ (x, y) \rightarrow (-y, -x) \][/tex]
3. The given image point is \((-4, 9)\). Therefore, we set up the equations based on the rule:
[tex]\[ (-y, -x) = (-4, 9) \][/tex]
4. From this, we can extract two equations:
[tex]\[ -y = -4 \quad \Rightarrow \quad y = 4 \][/tex]
[tex]\[ -x = 9 \quad \Rightarrow \quad x = -9 \][/tex]
So, the coordinates of the original point (pre-image) are \((-9, 4)\).
Comparing this with the provided options:
- \((-9, 4)\)
- \((-4, -9)\)
- \((4, 9)\)
- \((9, -4)\)
The correct answer is:
[tex]\[ (-9, 4) \][/tex]
When a point \((x, y)\) is reflected over the line \( y = -x \):
1. The x-coordinate of the new point will be the negative of the y-coordinate of the original point.
2. The y-coordinate of the new point will be the negative of the x-coordinate of the original point.
Given that the reflected point (image) is \((-4, 9)\), we need to determine the coordinates of the original point (pre-image) that produced this reflection.
Let's solve this step-by-step:
1. Let's denote the pre-image coordinates by \((x, y)\).
2. According to the reflection rule \( r_{y=-x} \), the pre-image point \((x, y)\) will transform as:
[tex]\[ (x, y) \rightarrow (-y, -x) \][/tex]
3. The given image point is \((-4, 9)\). Therefore, we set up the equations based on the rule:
[tex]\[ (-y, -x) = (-4, 9) \][/tex]
4. From this, we can extract two equations:
[tex]\[ -y = -4 \quad \Rightarrow \quad y = 4 \][/tex]
[tex]\[ -x = 9 \quad \Rightarrow \quad x = -9 \][/tex]
So, the coordinates of the original point (pre-image) are \((-9, 4)\).
Comparing this with the provided options:
- \((-9, 4)\)
- \((-4, -9)\)
- \((4, 9)\)
- \((9, -4)\)
The correct answer is:
[tex]\[ (-9, 4) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.