Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
We are given an inequality \( y \geq -x^2 + 8x - 2 \). Let's analyze the components step-by-step to determine the graph's characteristics.
### Step 1: Determine the Vertex
The given inequality represents a quadratic equation. To find the vertex of the quadratic equation \( y = -x^2 + 8x - 2 \), we use the vertex form of a quadratic equation, which is \( x = -\frac{b}{2a} \) where \( a = -1 \) and \( b = 8 \).
[tex]\[ x = -\frac{8}{2(-1)} = -\frac{8}{-2} = 4 \][/tex]
Next, we substitute \( x = 4 \) back into the equation to find the \( y \)-coordinate of the vertex.
[tex]\[ y = -(4)^2 + 8(4) - 2 \][/tex]
[tex]\[ y = -16 + 32 - 2 \][/tex]
[tex]\[ y = 14 \][/tex]
So, the vertex is at \( (4, 14) \).
### Step 2: Determine the Direction of the Parabola
The coefficient \( a \) in the quadratic equation \( y = -x^2 + 8x - 2 \) is negative (\( a = -1 \)). Therefore, the parabola opens downwards.
### Step 3: Determine the Type of Line and Shading
Since the inequality is \( y \geq -x^2 + 8x - 2 \):
- The line is solid because the inequality is \( \geq \) (greater than or equal to).
- The shading is above the parabola because we are considering \( y \) values that are greater than or equal to the values on the parabola.
### Conclusion
Based on the analysis, the correct description of the graph of \( y \geq -x^2 + 8x - 2 \) is:
- The vertex is at \( (4, 14) \)
- The parabola is a solid line that opens down
- The shading is above the parabola
Thus, the correct choice is:
The vertex is at [tex]\( (4, 14) \)[/tex]. The parabola is a solid line that opens down. Shading is above the parabola.
### Step 1: Determine the Vertex
The given inequality represents a quadratic equation. To find the vertex of the quadratic equation \( y = -x^2 + 8x - 2 \), we use the vertex form of a quadratic equation, which is \( x = -\frac{b}{2a} \) where \( a = -1 \) and \( b = 8 \).
[tex]\[ x = -\frac{8}{2(-1)} = -\frac{8}{-2} = 4 \][/tex]
Next, we substitute \( x = 4 \) back into the equation to find the \( y \)-coordinate of the vertex.
[tex]\[ y = -(4)^2 + 8(4) - 2 \][/tex]
[tex]\[ y = -16 + 32 - 2 \][/tex]
[tex]\[ y = 14 \][/tex]
So, the vertex is at \( (4, 14) \).
### Step 2: Determine the Direction of the Parabola
The coefficient \( a \) in the quadratic equation \( y = -x^2 + 8x - 2 \) is negative (\( a = -1 \)). Therefore, the parabola opens downwards.
### Step 3: Determine the Type of Line and Shading
Since the inequality is \( y \geq -x^2 + 8x - 2 \):
- The line is solid because the inequality is \( \geq \) (greater than or equal to).
- The shading is above the parabola because we are considering \( y \) values that are greater than or equal to the values on the parabola.
### Conclusion
Based on the analysis, the correct description of the graph of \( y \geq -x^2 + 8x - 2 \) is:
- The vertex is at \( (4, 14) \)
- The parabola is a solid line that opens down
- The shading is above the parabola
Thus, the correct choice is:
The vertex is at [tex]\( (4, 14) \)[/tex]. The parabola is a solid line that opens down. Shading is above the parabola.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.