Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's find the sum \( S_n \) for each geometric series case described.
The formula for the sum of the first \( n \) terms of a geometric series is:
[tex]\[ S_n = \begin{cases} a_1 \cdot \dfrac{1 - r^n}{1 - r} & \text{if } r \neq 1 \\ a_1 \cdot n & \text{if } r = 1 \end{cases} \][/tex]
### Case 1: \( a_1 = 2, a_n = 486, r = 3 \)
1. First, we need to find \( n \) (the number of terms):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 486 = 2 \cdot 3^{n-1} \\ 243 = 3^{n-1} \][/tex]
Since \( 243 = 3^5 \), then \( n-1 = 5 \) and \( n = 6 \).
2. Now, calculate the sum \( S_6 \):
[tex]\[ S_6 = 2 \cdot \left(\frac{1 - 3^6}{1 - 3}\right) \\ = 2 \cdot \left(\frac{1 - 729}{1 - 3}\right) \\ = 2 \cdot \left(\frac{-728}{-2}\right) \\ = 2 \cdot 364 \\ = 728 \][/tex]
### Case 2: \( a_1 = 1200, a_n = 75, r = \frac{1}{2} \)
1. First, we need to find \( n \):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 75 = 1200 \cdot \left(\frac{1}{2}\right)^{n-1} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{75}{1200} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{1}{16} \\ \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^4 \][/tex]
Here, \( n-1 = 4 \) and \( n = 5 \).
2. Now, calculate the sum \( S_5 \):
[tex]\[ S_5 = 1200 \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^5}{1 - \frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{1 - \frac{1}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{\frac{31}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{31}{16}\right) \\ = 1200 \cdot 1.9375 \\ = 2325 \][/tex]
### Case 4: \( a_1 = 3, r = \frac{1}{3}, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 3 \cdot \left(\frac{1 - \left(\frac {1}{3}\right)^4}{1 - \frac{1}{3}}\right) \\ = 3 \cdot \left(\frac{1 - \frac{1}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{\frac{80}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{80}{81} \cdot \frac{3}{2}\right) \\ = 3 \cdot \frac {240}{162} \\ = 3 \cdot \frac{120}{81} \\ = 4.444 \approx 4.44 \][/tex]
### Case 5: \( a_1 = 2, r = 6, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 2 \cdot \left(\frac{1 - 6^4}{1 - 6}\right) \\ = 2 \cdot \left(\frac{1 - 1296}{-5}\right) \\ = 2 \cdot \left(\frac{-1295}{-5}\right) \\ = 2 \cdot 259 \\ = 518 \][/tex]
### Case 7: \( a_1 = 100, r = - \frac{1}{2}, n = 5 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_5 = 100 \cdot \left(\frac{1 - \left(-\frac {1}{2}\right)^5}{1 - \left(-\frac {1}{2}\right)}\right) \\ = 100 \cdot \left(\frac{1 - \left(-\frac {1}{32}\right)}{1 + \frac{1}{2}}\right) \\ = 100 \cdot \left(\frac{1 - \left(-0.03125\right)}{1 + 0.5}\right) \\ = 100 \cdot \left(\frac{1 + 0.03125}{1.5}\right) \\ = 100 \cdot \left(\frac{1.03125}{1.5}\right) \\ \approx 68.75 \][/tex]
### Case 8: \( a_0 = 20 \) (initial term without ratio)
This case seems to refer a merely a single term geometric 0-th term series which has nothing further to sum just equal to 20
By keeping our interpretation \( a_{0}\ term \)
### Summarized Solutions:
1. \( S_1 = 728 \)
2. \( S_2 = 2325 \)
4. \( S_4 = 4.44 \)
5. \( S_5 = 518 \)
7. \( S_7 = 68.75 \)
8. \( S_{8}=20\
The formula for the sum of the first \( n \) terms of a geometric series is:
[tex]\[ S_n = \begin{cases} a_1 \cdot \dfrac{1 - r^n}{1 - r} & \text{if } r \neq 1 \\ a_1 \cdot n & \text{if } r = 1 \end{cases} \][/tex]
### Case 1: \( a_1 = 2, a_n = 486, r = 3 \)
1. First, we need to find \( n \) (the number of terms):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 486 = 2 \cdot 3^{n-1} \\ 243 = 3^{n-1} \][/tex]
Since \( 243 = 3^5 \), then \( n-1 = 5 \) and \( n = 6 \).
2. Now, calculate the sum \( S_6 \):
[tex]\[ S_6 = 2 \cdot \left(\frac{1 - 3^6}{1 - 3}\right) \\ = 2 \cdot \left(\frac{1 - 729}{1 - 3}\right) \\ = 2 \cdot \left(\frac{-728}{-2}\right) \\ = 2 \cdot 364 \\ = 728 \][/tex]
### Case 2: \( a_1 = 1200, a_n = 75, r = \frac{1}{2} \)
1. First, we need to find \( n \):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 75 = 1200 \cdot \left(\frac{1}{2}\right)^{n-1} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{75}{1200} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{1}{16} \\ \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^4 \][/tex]
Here, \( n-1 = 4 \) and \( n = 5 \).
2. Now, calculate the sum \( S_5 \):
[tex]\[ S_5 = 1200 \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^5}{1 - \frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{1 - \frac{1}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{\frac{31}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{31}{16}\right) \\ = 1200 \cdot 1.9375 \\ = 2325 \][/tex]
### Case 4: \( a_1 = 3, r = \frac{1}{3}, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 3 \cdot \left(\frac{1 - \left(\frac {1}{3}\right)^4}{1 - \frac{1}{3}}\right) \\ = 3 \cdot \left(\frac{1 - \frac{1}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{\frac{80}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{80}{81} \cdot \frac{3}{2}\right) \\ = 3 \cdot \frac {240}{162} \\ = 3 \cdot \frac{120}{81} \\ = 4.444 \approx 4.44 \][/tex]
### Case 5: \( a_1 = 2, r = 6, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 2 \cdot \left(\frac{1 - 6^4}{1 - 6}\right) \\ = 2 \cdot \left(\frac{1 - 1296}{-5}\right) \\ = 2 \cdot \left(\frac{-1295}{-5}\right) \\ = 2 \cdot 259 \\ = 518 \][/tex]
### Case 7: \( a_1 = 100, r = - \frac{1}{2}, n = 5 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_5 = 100 \cdot \left(\frac{1 - \left(-\frac {1}{2}\right)^5}{1 - \left(-\frac {1}{2}\right)}\right) \\ = 100 \cdot \left(\frac{1 - \left(-\frac {1}{32}\right)}{1 + \frac{1}{2}}\right) \\ = 100 \cdot \left(\frac{1 - \left(-0.03125\right)}{1 + 0.5}\right) \\ = 100 \cdot \left(\frac{1 + 0.03125}{1.5}\right) \\ = 100 \cdot \left(\frac{1.03125}{1.5}\right) \\ \approx 68.75 \][/tex]
### Case 8: \( a_0 = 20 \) (initial term without ratio)
This case seems to refer a merely a single term geometric 0-th term series which has nothing further to sum just equal to 20
By keeping our interpretation \( a_{0}\ term \)
### Summarized Solutions:
1. \( S_1 = 728 \)
2. \( S_2 = 2325 \)
4. \( S_4 = 4.44 \)
5. \( S_5 = 518 \)
7. \( S_7 = 68.75 \)
8. \( S_{8}=20\
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.