Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's find the sum \( S_n \) for each geometric series case described.
The formula for the sum of the first \( n \) terms of a geometric series is:
[tex]\[ S_n = \begin{cases} a_1 \cdot \dfrac{1 - r^n}{1 - r} & \text{if } r \neq 1 \\ a_1 \cdot n & \text{if } r = 1 \end{cases} \][/tex]
### Case 1: \( a_1 = 2, a_n = 486, r = 3 \)
1. First, we need to find \( n \) (the number of terms):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 486 = 2 \cdot 3^{n-1} \\ 243 = 3^{n-1} \][/tex]
Since \( 243 = 3^5 \), then \( n-1 = 5 \) and \( n = 6 \).
2. Now, calculate the sum \( S_6 \):
[tex]\[ S_6 = 2 \cdot \left(\frac{1 - 3^6}{1 - 3}\right) \\ = 2 \cdot \left(\frac{1 - 729}{1 - 3}\right) \\ = 2 \cdot \left(\frac{-728}{-2}\right) \\ = 2 \cdot 364 \\ = 728 \][/tex]
### Case 2: \( a_1 = 1200, a_n = 75, r = \frac{1}{2} \)
1. First, we need to find \( n \):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 75 = 1200 \cdot \left(\frac{1}{2}\right)^{n-1} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{75}{1200} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{1}{16} \\ \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^4 \][/tex]
Here, \( n-1 = 4 \) and \( n = 5 \).
2. Now, calculate the sum \( S_5 \):
[tex]\[ S_5 = 1200 \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^5}{1 - \frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{1 - \frac{1}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{\frac{31}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{31}{16}\right) \\ = 1200 \cdot 1.9375 \\ = 2325 \][/tex]
### Case 4: \( a_1 = 3, r = \frac{1}{3}, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 3 \cdot \left(\frac{1 - \left(\frac {1}{3}\right)^4}{1 - \frac{1}{3}}\right) \\ = 3 \cdot \left(\frac{1 - \frac{1}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{\frac{80}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{80}{81} \cdot \frac{3}{2}\right) \\ = 3 \cdot \frac {240}{162} \\ = 3 \cdot \frac{120}{81} \\ = 4.444 \approx 4.44 \][/tex]
### Case 5: \( a_1 = 2, r = 6, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 2 \cdot \left(\frac{1 - 6^4}{1 - 6}\right) \\ = 2 \cdot \left(\frac{1 - 1296}{-5}\right) \\ = 2 \cdot \left(\frac{-1295}{-5}\right) \\ = 2 \cdot 259 \\ = 518 \][/tex]
### Case 7: \( a_1 = 100, r = - \frac{1}{2}, n = 5 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_5 = 100 \cdot \left(\frac{1 - \left(-\frac {1}{2}\right)^5}{1 - \left(-\frac {1}{2}\right)}\right) \\ = 100 \cdot \left(\frac{1 - \left(-\frac {1}{32}\right)}{1 + \frac{1}{2}}\right) \\ = 100 \cdot \left(\frac{1 - \left(-0.03125\right)}{1 + 0.5}\right) \\ = 100 \cdot \left(\frac{1 + 0.03125}{1.5}\right) \\ = 100 \cdot \left(\frac{1.03125}{1.5}\right) \\ \approx 68.75 \][/tex]
### Case 8: \( a_0 = 20 \) (initial term without ratio)
This case seems to refer a merely a single term geometric 0-th term series which has nothing further to sum just equal to 20
By keeping our interpretation \( a_{0}\ term \)
### Summarized Solutions:
1. \( S_1 = 728 \)
2. \( S_2 = 2325 \)
4. \( S_4 = 4.44 \)
5. \( S_5 = 518 \)
7. \( S_7 = 68.75 \)
8. \( S_{8}=20\
The formula for the sum of the first \( n \) terms of a geometric series is:
[tex]\[ S_n = \begin{cases} a_1 \cdot \dfrac{1 - r^n}{1 - r} & \text{if } r \neq 1 \\ a_1 \cdot n & \text{if } r = 1 \end{cases} \][/tex]
### Case 1: \( a_1 = 2, a_n = 486, r = 3 \)
1. First, we need to find \( n \) (the number of terms):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 486 = 2 \cdot 3^{n-1} \\ 243 = 3^{n-1} \][/tex]
Since \( 243 = 3^5 \), then \( n-1 = 5 \) and \( n = 6 \).
2. Now, calculate the sum \( S_6 \):
[tex]\[ S_6 = 2 \cdot \left(\frac{1 - 3^6}{1 - 3}\right) \\ = 2 \cdot \left(\frac{1 - 729}{1 - 3}\right) \\ = 2 \cdot \left(\frac{-728}{-2}\right) \\ = 2 \cdot 364 \\ = 728 \][/tex]
### Case 2: \( a_1 = 1200, a_n = 75, r = \frac{1}{2} \)
1. First, we need to find \( n \):
[tex]\[ a_n = a_1 \cdot r^{n-1} \\ 75 = 1200 \cdot \left(\frac{1}{2}\right)^{n-1} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{75}{1200} \\ \left(\frac{1}{2}\right)^{n-1} = \frac{1}{16} \\ \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^4 \][/tex]
Here, \( n-1 = 4 \) and \( n = 5 \).
2. Now, calculate the sum \( S_5 \):
[tex]\[ S_5 = 1200 \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^5}{1 - \frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{1 - \frac{1}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{\frac{31}{32}}{\frac{1}{2}}\right) \\ = 1200 \cdot \left(\frac{31}{16}\right) \\ = 1200 \cdot 1.9375 \\ = 2325 \][/tex]
### Case 4: \( a_1 = 3, r = \frac{1}{3}, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 3 \cdot \left(\frac{1 - \left(\frac {1}{3}\right)^4}{1 - \frac{1}{3}}\right) \\ = 3 \cdot \left(\frac{1 - \frac{1}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{\frac{80}{81}}{\frac{2}{3}}\right) \\ = 3 \cdot \left(\frac{80}{81} \cdot \frac{3}{2}\right) \\ = 3 \cdot \frac {240}{162} \\ = 3 \cdot \frac{120}{81} \\ = 4.444 \approx 4.44 \][/tex]
### Case 5: \( a_1 = 2, r = 6, n = 4 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_4 = 2 \cdot \left(\frac{1 - 6^4}{1 - 6}\right) \\ = 2 \cdot \left(\frac{1 - 1296}{-5}\right) \\ = 2 \cdot \left(\frac{-1295}{-5}\right) \\ = 2 \cdot 259 \\ = 518 \][/tex]
### Case 7: \( a_1 = 100, r = - \frac{1}{2}, n = 5 \)
1. Using the sum formula for \( n \) terms:
[tex]\[ S_5 = 100 \cdot \left(\frac{1 - \left(-\frac {1}{2}\right)^5}{1 - \left(-\frac {1}{2}\right)}\right) \\ = 100 \cdot \left(\frac{1 - \left(-\frac {1}{32}\right)}{1 + \frac{1}{2}}\right) \\ = 100 \cdot \left(\frac{1 - \left(-0.03125\right)}{1 + 0.5}\right) \\ = 100 \cdot \left(\frac{1 + 0.03125}{1.5}\right) \\ = 100 \cdot \left(\frac{1.03125}{1.5}\right) \\ \approx 68.75 \][/tex]
### Case 8: \( a_0 = 20 \) (initial term without ratio)
This case seems to refer a merely a single term geometric 0-th term series which has nothing further to sum just equal to 20
By keeping our interpretation \( a_{0}\ term \)
### Summarized Solutions:
1. \( S_1 = 728 \)
2. \( S_2 = 2325 \)
4. \( S_4 = 4.44 \)
5. \( S_5 = 518 \)
7. \( S_7 = 68.75 \)
8. \( S_{8}=20\
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.