At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's find the solutions to the given system of equations step-by-step.
1. Solve the equation \( x = \frac{3}{x} \):
- First, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 3 \][/tex]
[tex]\[ x^2 = 3 \][/tex]
- Next, take the square root of both sides to solve for \( x \):
[tex]\[ x = \sqrt{3} \quad \text{or} \quad x = -\sqrt{3} \][/tex]
So, the solutions for this equation are:
[tex]\[ x = \sqrt{3}, \quad x = -\sqrt{3} \][/tex]
2. Solve the equation \( x = \frac{9}{x} \):
- Similar to the previous step, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 9 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
- Take the square root of both sides to solve for \( x \):
[tex]\[ x = 3 \quad \text{or} \quad x = -3 \][/tex]
So, the solutions for this equation are:
[tex]\[ x = 3, \quad x = -3 \][/tex]
3. Solve the equation \( 0 = \frac{3}{x} + x \):
- Start by moving all terms to one side to set the equation to zero:
[tex]\[ \frac{3}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 3 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -3 \][/tex]
Since \( x^2 = -3 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
4. Solve the equation \( 0 = \frac{9}{x} + x \):
- Similarly, start by moving all terms to one side:
[tex]\[ \frac{9}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 9 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -9 \][/tex]
Again, since \( x^2 = -9 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
To summarize, the solutions to the system of equations are:
- For \( x = \frac{3}{x} \), the solutions are \( x = \sqrt{3} \) and \( x = -\sqrt{3} \).
- For \( x = \frac{9}{x} \), the solutions are \( x = 3 \) and \( x = -3 \).
- Both \( 0 = \frac{3}{x} + x \) and \( 0 = \frac{9}{x} + x \) have no real solutions.
So, our final answers are:
[tex]\[ ([1.7320508075688772, -1.7320508075688772], [3, -3], [], []) \][/tex]
1. Solve the equation \( x = \frac{3}{x} \):
- First, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 3 \][/tex]
[tex]\[ x^2 = 3 \][/tex]
- Next, take the square root of both sides to solve for \( x \):
[tex]\[ x = \sqrt{3} \quad \text{or} \quad x = -\sqrt{3} \][/tex]
So, the solutions for this equation are:
[tex]\[ x = \sqrt{3}, \quad x = -\sqrt{3} \][/tex]
2. Solve the equation \( x = \frac{9}{x} \):
- Similar to the previous step, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 9 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
- Take the square root of both sides to solve for \( x \):
[tex]\[ x = 3 \quad \text{or} \quad x = -3 \][/tex]
So, the solutions for this equation are:
[tex]\[ x = 3, \quad x = -3 \][/tex]
3. Solve the equation \( 0 = \frac{3}{x} + x \):
- Start by moving all terms to one side to set the equation to zero:
[tex]\[ \frac{3}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 3 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -3 \][/tex]
Since \( x^2 = -3 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
4. Solve the equation \( 0 = \frac{9}{x} + x \):
- Similarly, start by moving all terms to one side:
[tex]\[ \frac{9}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 9 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -9 \][/tex]
Again, since \( x^2 = -9 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
To summarize, the solutions to the system of equations are:
- For \( x = \frac{3}{x} \), the solutions are \( x = \sqrt{3} \) and \( x = -\sqrt{3} \).
- For \( x = \frac{9}{x} \), the solutions are \( x = 3 \) and \( x = -3 \).
- Both \( 0 = \frac{3}{x} + x \) and \( 0 = \frac{9}{x} + x \) have no real solutions.
So, our final answers are:
[tex]\[ ([1.7320508075688772, -1.7320508075688772], [3, -3], [], []) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.