Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's find the solutions to the given system of equations step-by-step.
1. Solve the equation \( x = \frac{3}{x} \):
- First, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 3 \][/tex]
[tex]\[ x^2 = 3 \][/tex]
- Next, take the square root of both sides to solve for \( x \):
[tex]\[ x = \sqrt{3} \quad \text{or} \quad x = -\sqrt{3} \][/tex]
So, the solutions for this equation are:
[tex]\[ x = \sqrt{3}, \quad x = -\sqrt{3} \][/tex]
2. Solve the equation \( x = \frac{9}{x} \):
- Similar to the previous step, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 9 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
- Take the square root of both sides to solve for \( x \):
[tex]\[ x = 3 \quad \text{or} \quad x = -3 \][/tex]
So, the solutions for this equation are:
[tex]\[ x = 3, \quad x = -3 \][/tex]
3. Solve the equation \( 0 = \frac{3}{x} + x \):
- Start by moving all terms to one side to set the equation to zero:
[tex]\[ \frac{3}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 3 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -3 \][/tex]
Since \( x^2 = -3 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
4. Solve the equation \( 0 = \frac{9}{x} + x \):
- Similarly, start by moving all terms to one side:
[tex]\[ \frac{9}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 9 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -9 \][/tex]
Again, since \( x^2 = -9 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
To summarize, the solutions to the system of equations are:
- For \( x = \frac{3}{x} \), the solutions are \( x = \sqrt{3} \) and \( x = -\sqrt{3} \).
- For \( x = \frac{9}{x} \), the solutions are \( x = 3 \) and \( x = -3 \).
- Both \( 0 = \frac{3}{x} + x \) and \( 0 = \frac{9}{x} + x \) have no real solutions.
So, our final answers are:
[tex]\[ ([1.7320508075688772, -1.7320508075688772], [3, -3], [], []) \][/tex]
1. Solve the equation \( x = \frac{3}{x} \):
- First, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 3 \][/tex]
[tex]\[ x^2 = 3 \][/tex]
- Next, take the square root of both sides to solve for \( x \):
[tex]\[ x = \sqrt{3} \quad \text{or} \quad x = -\sqrt{3} \][/tex]
So, the solutions for this equation are:
[tex]\[ x = \sqrt{3}, \quad x = -\sqrt{3} \][/tex]
2. Solve the equation \( x = \frac{9}{x} \):
- Similar to the previous step, multiply both sides by \( x \) to clear the fraction:
[tex]\[ x \cdot x = 9 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
- Take the square root of both sides to solve for \( x \):
[tex]\[ x = 3 \quad \text{or} \quad x = -3 \][/tex]
So, the solutions for this equation are:
[tex]\[ x = 3, \quad x = -3 \][/tex]
3. Solve the equation \( 0 = \frac{3}{x} + x \):
- Start by moving all terms to one side to set the equation to zero:
[tex]\[ \frac{3}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 3 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -3 \][/tex]
Since \( x^2 = -3 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
4. Solve the equation \( 0 = \frac{9}{x} + x \):
- Similarly, start by moving all terms to one side:
[tex]\[ \frac{9}{x} + x = 0 \][/tex]
- Multiply every term by \( x \) to clear the fraction:
[tex]\[ 9 + x^2 = 0 \][/tex]
- Rearrange to isolate the quadratic term:
[tex]\[ x^2 = -9 \][/tex]
Again, since \( x^2 = -9 \) involves the square root of a negative number, it does not have any real solutions. Thus, for real numbers, there are no solutions to this equation:
[tex]\[ \text{No real solutions} \][/tex]
To summarize, the solutions to the system of equations are:
- For \( x = \frac{3}{x} \), the solutions are \( x = \sqrt{3} \) and \( x = -\sqrt{3} \).
- For \( x = \frac{9}{x} \), the solutions are \( x = 3 \) and \( x = -3 \).
- Both \( 0 = \frac{3}{x} + x \) and \( 0 = \frac{9}{x} + x \) have no real solutions.
So, our final answers are:
[tex]\[ ([1.7320508075688772, -1.7320508075688772], [3, -3], [], []) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.