Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the length of time the money was invested, we need to use the compound interest formula. Given that the interest is compounded annually, the formula we will use is:
[tex]\[ A = P(1 + r)^t \][/tex]
where:
- \( A \) is the final amount of money (the balance after interest is applied),
- \( P \) is the principal amount (the initial amount of money),
- \( r \) is the annual interest rate (as a decimal),
- \( t \) is the number of years the money is invested.
We are given:
- \( P = 288 \) (the initial principal),
- \( r = 0.07 \) (the annual interest rate as a decimal),
- \( A = 581.23 \) (the final balance).
We need to solve for \( t \).
First, we start by rearranging the compound interest formula to solve for \( t \):
[tex]\[ \frac{A}{P} = (1 + r)^t \][/tex]
Next, we take the natural logarithm (ln) of both sides to get:
[tex]\[ \ln\left(\frac{A}{P}\right) = t \cdot \ln(1 + r) \][/tex]
Now, solve for \( t \):
[tex]\[ t = \frac{\ln\left(\frac{A}{P}\right)}{\ln(1 + r)} \][/tex]
Let's substitute the given values into the formula:
[tex]\[ t = \frac{\ln\left(\frac{581.23}{288}\right)}{\ln(1 + 0.07)} \][/tex]
Calculating the values inside the logarithm:
[tex]\[ \frac{581.23}{288} \approx 2.018826 \][/tex]
Now, plug this into the formula:
[tex]\[ t = \frac{\ln(2.018826)}{\ln(1.07)} \][/tex]
To find the natural logarithm values:
[tex]\[ \ln(2.018826) \approx 0.700353 \][/tex]
[tex]\[ \ln(1.07) \approx 0.067658 \][/tex]
Finally, divide these values to find \( t \):
[tex]\[ t \approx \frac{0.700353}{0.067658} \approx 10.378 \][/tex]
So, the money was invested for approximately 10.38 years.
[tex]\[ A = P(1 + r)^t \][/tex]
where:
- \( A \) is the final amount of money (the balance after interest is applied),
- \( P \) is the principal amount (the initial amount of money),
- \( r \) is the annual interest rate (as a decimal),
- \( t \) is the number of years the money is invested.
We are given:
- \( P = 288 \) (the initial principal),
- \( r = 0.07 \) (the annual interest rate as a decimal),
- \( A = 581.23 \) (the final balance).
We need to solve for \( t \).
First, we start by rearranging the compound interest formula to solve for \( t \):
[tex]\[ \frac{A}{P} = (1 + r)^t \][/tex]
Next, we take the natural logarithm (ln) of both sides to get:
[tex]\[ \ln\left(\frac{A}{P}\right) = t \cdot \ln(1 + r) \][/tex]
Now, solve for \( t \):
[tex]\[ t = \frac{\ln\left(\frac{A}{P}\right)}{\ln(1 + r)} \][/tex]
Let's substitute the given values into the formula:
[tex]\[ t = \frac{\ln\left(\frac{581.23}{288}\right)}{\ln(1 + 0.07)} \][/tex]
Calculating the values inside the logarithm:
[tex]\[ \frac{581.23}{288} \approx 2.018826 \][/tex]
Now, plug this into the formula:
[tex]\[ t = \frac{\ln(2.018826)}{\ln(1.07)} \][/tex]
To find the natural logarithm values:
[tex]\[ \ln(2.018826) \approx 0.700353 \][/tex]
[tex]\[ \ln(1.07) \approx 0.067658 \][/tex]
Finally, divide these values to find \( t \):
[tex]\[ t \approx \frac{0.700353}{0.067658} \approx 10.378 \][/tex]
So, the money was invested for approximately 10.38 years.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.