At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's work through the problems step-by-step.
Part (i)
Evaluate the expression \(1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right)\).
1. First, convert the mixed numbers to improper fractions:
- \(1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}\)
- \(3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3}\)
- \(4 \frac{1}{5} = 4 + \frac{1}{5} = \frac{20}{5} + \frac{1}{5} = \frac{21}{5}\)
- \(6 \frac{1}{2} = 6 + \frac{1}{2} = \frac{12}{2} + \frac{1}{2} = \frac{13}{2}\)
2. Calculate the expression inside the parentheses:
[tex]\[ 3 \frac{1}{3} + 4 \frac{1}{5} - 6 \frac{1}{2} = \frac{10}{3} + \frac{21}{5} - \frac{13}{2} \][/tex]
3. To add and subtract these fractions, find a common denominator (LCM of 3, 5, and 2 is 30):
- Convert each fraction to have the denominator 30:
- \(\frac{10}{3} = \frac{10 \times 10}{3 \times 10} = \frac{100}{30}\)
- \(\frac{21}{5} = \frac{21 \times 6}{5 \times 6} = \frac{126}{30}\)
- \(\frac{13}{2} = \frac{13 \times 15}{2 \times 15} = \frac{195}{30}\)
4. Add and subtract the numerators:
[tex]\[ \frac{100}{30} + \frac{126}{30} - \frac{195}{30} = \frac{100 + 126 - 195}{30} = \frac{31}{30} \][/tex]
5. Now, divide \(\frac{3}{2}\) by \(\frac{31}{30}\):
[tex]\[ 1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right) = \frac{3}{2} \div \frac{31}{30} = \frac{3}{2} \times \frac{30}{31} = \frac{90}{62} = \frac{45}{31} \approx 1.4516129032258067 \][/tex]
So, the value for part (i) is approximately \(1.4516129032258067\).
Part (ii)
Evaluate the expression \(1 \frac{7}{53}\) of \(\left[1 \frac{1}{5}-\left\{3 \frac{4}{5} \div(\ldots\right.\right. \).
Unfortunately, the given problem for part (ii) is incomplete, so it is impossible to determine a valid solution without additional information. The expression after \(3 \frac{4}{5} \div(\ldots)\) is missing, and therefore part (ii) cannot be solved as presented.
In conclusion:
- The value for part (i) is approximately \(1.4516129032258067\).
- The value for part (ii) cannot be determined as the expression is incomplete or incorrect.
Part (i)
Evaluate the expression \(1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right)\).
1. First, convert the mixed numbers to improper fractions:
- \(1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}\)
- \(3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3}\)
- \(4 \frac{1}{5} = 4 + \frac{1}{5} = \frac{20}{5} + \frac{1}{5} = \frac{21}{5}\)
- \(6 \frac{1}{2} = 6 + \frac{1}{2} = \frac{12}{2} + \frac{1}{2} = \frac{13}{2}\)
2. Calculate the expression inside the parentheses:
[tex]\[ 3 \frac{1}{3} + 4 \frac{1}{5} - 6 \frac{1}{2} = \frac{10}{3} + \frac{21}{5} - \frac{13}{2} \][/tex]
3. To add and subtract these fractions, find a common denominator (LCM of 3, 5, and 2 is 30):
- Convert each fraction to have the denominator 30:
- \(\frac{10}{3} = \frac{10 \times 10}{3 \times 10} = \frac{100}{30}\)
- \(\frac{21}{5} = \frac{21 \times 6}{5 \times 6} = \frac{126}{30}\)
- \(\frac{13}{2} = \frac{13 \times 15}{2 \times 15} = \frac{195}{30}\)
4. Add and subtract the numerators:
[tex]\[ \frac{100}{30} + \frac{126}{30} - \frac{195}{30} = \frac{100 + 126 - 195}{30} = \frac{31}{30} \][/tex]
5. Now, divide \(\frac{3}{2}\) by \(\frac{31}{30}\):
[tex]\[ 1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right) = \frac{3}{2} \div \frac{31}{30} = \frac{3}{2} \times \frac{30}{31} = \frac{90}{62} = \frac{45}{31} \approx 1.4516129032258067 \][/tex]
So, the value for part (i) is approximately \(1.4516129032258067\).
Part (ii)
Evaluate the expression \(1 \frac{7}{53}\) of \(\left[1 \frac{1}{5}-\left\{3 \frac{4}{5} \div(\ldots\right.\right. \).
Unfortunately, the given problem for part (ii) is incomplete, so it is impossible to determine a valid solution without additional information. The expression after \(3 \frac{4}{5} \div(\ldots)\) is missing, and therefore part (ii) cannot be solved as presented.
In conclusion:
- The value for part (i) is approximately \(1.4516129032258067\).
- The value for part (ii) cannot be determined as the expression is incomplete or incorrect.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.