Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To model the data using a logarithmic function, we can use the form:
[tex]\[ y = a \ln(x) + b \][/tex]
where \( \ln(x) \) represents the natural logarithm of \( x \), and \( a \) and \( b \) are constants that we need to determine.
Given the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 60 \\ \hline 2 & 54 \\ \hline 3 & 51 \\ \hline 4 & 50 \\ \hline 5 & 46 \\ \hline 6 & 45 \\ \hline 7 & 44 \\ \hline \end{array} \][/tex]
we need to find the best values for constants \( a \) and \( b \) that fit this logarithmic model to the given data points. After performing the necessary calculations and fitting the logarithmic model to the data, we determine the values of \( a \) and \( b \).
The fitted parameters are:
[tex]\[ a = -8.245225947626354 \][/tex]
[tex]\[ b = 60.04169738027974 \][/tex]
Therefore, the logarithmic function that models the provided data is:
[tex]\[ y = -8.245225947626354 \ln(x) + 60.04169738027974 \][/tex]
This function captures the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] based on the given data points.
[tex]\[ y = a \ln(x) + b \][/tex]
where \( \ln(x) \) represents the natural logarithm of \( x \), and \( a \) and \( b \) are constants that we need to determine.
Given the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 60 \\ \hline 2 & 54 \\ \hline 3 & 51 \\ \hline 4 & 50 \\ \hline 5 & 46 \\ \hline 6 & 45 \\ \hline 7 & 44 \\ \hline \end{array} \][/tex]
we need to find the best values for constants \( a \) and \( b \) that fit this logarithmic model to the given data points. After performing the necessary calculations and fitting the logarithmic model to the data, we determine the values of \( a \) and \( b \).
The fitted parameters are:
[tex]\[ a = -8.245225947626354 \][/tex]
[tex]\[ b = 60.04169738027974 \][/tex]
Therefore, the logarithmic function that models the provided data is:
[tex]\[ y = -8.245225947626354 \ln(x) + 60.04169738027974 \][/tex]
This function captures the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] based on the given data points.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.