At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the correct statements about the graph of the inequality \( y < x^2 + 2x - 6 \), we need to analyze the properties of the quadratic function \( y = x^2 + 2x - 6 \). Here's a step-by-step breakdown:
### 1. Direction of the Parabola:
The coefficient of \( x^2 \) in the quadratic function is +1, which is positive. Therefore, the parabola opens up.
### 2. Shading:
The inequality given is \( y < x^2 + 2x - 6 \). In this case, the shading is below or outside the parabola since it represents all the points where \( y \) is less than the expression \( x^2 + 2x - 6 \).
### 3. Vertex of the Parabola:
To find the vertex of the parabola \( y = x^2 + 2x - 6 \), we use the vertex formula \( x = -\frac{b}{2a} \), where \( a \) and \( b \) are the coefficients of \( x^2 \) and \( x \), respectively. Here:
- \( a = 1 \)
- \( b = 2 \)
So, the \( x \)-coordinate of the vertex is:
[tex]\[ x = -\frac{2}{2 \cdot 1} = -1 \][/tex]
To find the \( y \)-coordinate of the vertex, substitute \( x = -1 \) back into the equation \( y = x^2 + 2x - 6 \):
[tex]\[ y = (-1)^2 + 2(-1) - 6 \][/tex]
[tex]\[ y = 1 - 2 - 6 \][/tex]
[tex]\[ y = -7 \][/tex]
Thus, the vertex is at \((-1, -7)\).
### 4. Nature of the Line:
The given inequality \( y < x^2 + 2x - 6 \) is a strict inequality (less than, but not equal to). This means that the boundary line of the parabola is dashed to indicate that points on the line \( y = x^2 + 2x - 6 \) are not included in the solution set.
### Summary:
Based on our analysis:
- The parabola does not open down; it opens up.
- The shading is below or outside the parabola.
- The vertex of the parabola is correctly located at \( (-1, -7) \).
- The parabola is represented by a dashed line, not a solid line.
Therefore, the true statement about the graph of \( y < x^2 + 2x - 6 \) is:
- The vertex is located at [tex]\( (-1, -7) \)[/tex].
### 1. Direction of the Parabola:
The coefficient of \( x^2 \) in the quadratic function is +1, which is positive. Therefore, the parabola opens up.
### 2. Shading:
The inequality given is \( y < x^2 + 2x - 6 \). In this case, the shading is below or outside the parabola since it represents all the points where \( y \) is less than the expression \( x^2 + 2x - 6 \).
### 3. Vertex of the Parabola:
To find the vertex of the parabola \( y = x^2 + 2x - 6 \), we use the vertex formula \( x = -\frac{b}{2a} \), where \( a \) and \( b \) are the coefficients of \( x^2 \) and \( x \), respectively. Here:
- \( a = 1 \)
- \( b = 2 \)
So, the \( x \)-coordinate of the vertex is:
[tex]\[ x = -\frac{2}{2 \cdot 1} = -1 \][/tex]
To find the \( y \)-coordinate of the vertex, substitute \( x = -1 \) back into the equation \( y = x^2 + 2x - 6 \):
[tex]\[ y = (-1)^2 + 2(-1) - 6 \][/tex]
[tex]\[ y = 1 - 2 - 6 \][/tex]
[tex]\[ y = -7 \][/tex]
Thus, the vertex is at \((-1, -7)\).
### 4. Nature of the Line:
The given inequality \( y < x^2 + 2x - 6 \) is a strict inequality (less than, but not equal to). This means that the boundary line of the parabola is dashed to indicate that points on the line \( y = x^2 + 2x - 6 \) are not included in the solution set.
### Summary:
Based on our analysis:
- The parabola does not open down; it opens up.
- The shading is below or outside the parabola.
- The vertex of the parabola is correctly located at \( (-1, -7) \).
- The parabola is represented by a dashed line, not a solid line.
Therefore, the true statement about the graph of \( y < x^2 + 2x - 6 \) is:
- The vertex is located at [tex]\( (-1, -7) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.