Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let's proceed by expressing each logarithm in terms of \(\ln 3\) and \(\ln 5\).
### 1. \(\ln \frac{81}{125}\)
The term \(\frac{81}{125}\) can be broken down into:
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 \][/tex]
Next, let's express 81 and 125 in terms of their prime factors:
[tex]\[ 81 = 3^4 \][/tex]
[tex]\[ 125 = 5^3 \][/tex]
So, we have:
[tex]\[ \ln 81 = \ln (3^4) = 4 \ln 3 \][/tex]
[tex]\[ \ln 125 = \ln (5^3) = 3 \ln 5 \][/tex]
Combining these, we get:
[tex]\[ \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \][/tex]
### 2. \(4 \ln 5 - 3 \ln 3\)
This expression is already in terms of \(\ln 3\) and \(\ln 5\). Nothing else needs to be done:
[tex]\[ 4 \ln 5 - 3 \ln 3 \][/tex]
### 3. \(5 \ln 3 - 3 \ln 4\)
We observe that \( \ln 4 \) can be expressed using logarithms of 2:
[tex]\[ \ln 4 = \ln (2^2) = 2 \ln 2 \][/tex]
Unfortunately, we do not have \(\ln 2\) in our given basis (\(\ln 3\) and \(\ln 5\)), so this expression is as simplified as it can get in terms of the given bases:
[tex]\[ 5 \ln 3 - 3 \ln 4 \][/tex]
### 4. \(4 \ln 3 - 3 \ln 5\)
This expression is already in terms of \(\ln 3\) and \(\ln 5\). No further modifications are needed:
[tex]\[ 4 \ln 3 - 3 \ln 5 \][/tex]
### 5. \(3 \ln 4 - 5 \ln 3\)
Again, we can express \( \ln 4 \) in terms of \(\ln 2\):
[tex]\[ \ln 4 = 2 \ln 2 \][/tex]
Given we do not have \(\ln 2\) in our basis (\(\ln 3\) and \(\ln 5\)), we leave this as:
[tex]\[ 3 \ln 4 - 5 \ln 3 \][/tex]
Now let's summarize the results and provide their numerical values:
### Numerical Results:
1. \(\ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \approx -0.4339\)
2. \(4 \ln 5 - 3 \ln 3 \approx 3.1419\)
3. \(5 \ln 3 - 3 \ln 4 \approx 1.3342\)
4. \(4 \ln 3 - 3 \ln 5 \approx -0.4339\)
5. \(3 \ln 4 - 5 \ln 3 \approx -1.3342\)
Thus, we have expressed all given logarithms in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex], and provided their approximate numerical values.
### 1. \(\ln \frac{81}{125}\)
The term \(\frac{81}{125}\) can be broken down into:
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 \][/tex]
Next, let's express 81 and 125 in terms of their prime factors:
[tex]\[ 81 = 3^4 \][/tex]
[tex]\[ 125 = 5^3 \][/tex]
So, we have:
[tex]\[ \ln 81 = \ln (3^4) = 4 \ln 3 \][/tex]
[tex]\[ \ln 125 = \ln (5^3) = 3 \ln 5 \][/tex]
Combining these, we get:
[tex]\[ \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \][/tex]
### 2. \(4 \ln 5 - 3 \ln 3\)
This expression is already in terms of \(\ln 3\) and \(\ln 5\). Nothing else needs to be done:
[tex]\[ 4 \ln 5 - 3 \ln 3 \][/tex]
### 3. \(5 \ln 3 - 3 \ln 4\)
We observe that \( \ln 4 \) can be expressed using logarithms of 2:
[tex]\[ \ln 4 = \ln (2^2) = 2 \ln 2 \][/tex]
Unfortunately, we do not have \(\ln 2\) in our given basis (\(\ln 3\) and \(\ln 5\)), so this expression is as simplified as it can get in terms of the given bases:
[tex]\[ 5 \ln 3 - 3 \ln 4 \][/tex]
### 4. \(4 \ln 3 - 3 \ln 5\)
This expression is already in terms of \(\ln 3\) and \(\ln 5\). No further modifications are needed:
[tex]\[ 4 \ln 3 - 3 \ln 5 \][/tex]
### 5. \(3 \ln 4 - 5 \ln 3\)
Again, we can express \( \ln 4 \) in terms of \(\ln 2\):
[tex]\[ \ln 4 = 2 \ln 2 \][/tex]
Given we do not have \(\ln 2\) in our basis (\(\ln 3\) and \(\ln 5\)), we leave this as:
[tex]\[ 3 \ln 4 - 5 \ln 3 \][/tex]
Now let's summarize the results and provide their numerical values:
### Numerical Results:
1. \(\ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \approx -0.4339\)
2. \(4 \ln 5 - 3 \ln 3 \approx 3.1419\)
3. \(5 \ln 3 - 3 \ln 4 \approx 1.3342\)
4. \(4 \ln 3 - 3 \ln 5 \approx -0.4339\)
5. \(3 \ln 4 - 5 \ln 3 \approx -1.3342\)
Thus, we have expressed all given logarithms in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex], and provided their approximate numerical values.
The answer is C since ln(81/125) can be simplified into ln81-ln125. That can be simplified again to 4ln3-3ln5
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.