Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright class, let's solve the equation \(\left(2x^2 + 1\right)^2 = 4(x - 2)\) step-by-step:
1. Expand both sides:
On the left-hand side, we have a squared binomial:
[tex]\[ \left(2x^2 + 1\right)^2 = \left(2x^2 + 1\right) \left(2x^2 + 1\right) \][/tex]
Expanding this, we get:
[tex]\[ (2x^2 + 1)(2x^2 + 1) = 4x^4 + 2x^2 + 2x^2 + 1^2 = 4x^4 + 4x^2 + 1 \][/tex]
The right-hand side is:
[tex]\[ 4(x - 2) = 4x - 8 \][/tex]
So the equation now is:
[tex]\[ 4x^4 + 4x^2 + 1 = 4x - 8 \][/tex]
2. Reorganize the equation:
Move all the terms to one side to create a polynomial equal to zero:
[tex]\[ 4x^4 + 4x^2 + 1 - 4x + 8 = 0 \][/tex]
Simplify it:
[tex]\[ 4x^4 + 4x^2 - 4x + 9 = 0 \][/tex]
3. Find the roots of the polynomial:
Solving a polynomial of degree 4 can be complex because it involves finding the roots of a quartic equation. This typically involves methods beyond the quadratic formula and might require numerical methods or sophisticated algebraic techniques.
Using advanced algebraic methods or numerical approaches to solve the polynomial equation \(4x^4 + 4x^2 - 4x + 9 = 0\), we find the roots to be:
[tex]\[ x_1 = -\frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} + \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_2 = \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} - \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_3 = -\frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} - \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
[tex]\[ x_4 = \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} + \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
These expressions involve complex numbers and radicals, indicating the intricate nature of solving such quartic equations exactly.
1. Expand both sides:
On the left-hand side, we have a squared binomial:
[tex]\[ \left(2x^2 + 1\right)^2 = \left(2x^2 + 1\right) \left(2x^2 + 1\right) \][/tex]
Expanding this, we get:
[tex]\[ (2x^2 + 1)(2x^2 + 1) = 4x^4 + 2x^2 + 2x^2 + 1^2 = 4x^4 + 4x^2 + 1 \][/tex]
The right-hand side is:
[tex]\[ 4(x - 2) = 4x - 8 \][/tex]
So the equation now is:
[tex]\[ 4x^4 + 4x^2 + 1 = 4x - 8 \][/tex]
2. Reorganize the equation:
Move all the terms to one side to create a polynomial equal to zero:
[tex]\[ 4x^4 + 4x^2 + 1 - 4x + 8 = 0 \][/tex]
Simplify it:
[tex]\[ 4x^4 + 4x^2 - 4x + 9 = 0 \][/tex]
3. Find the roots of the polynomial:
Solving a polynomial of degree 4 can be complex because it involves finding the roots of a quartic equation. This typically involves methods beyond the quadratic formula and might require numerical methods or sophisticated algebraic techniques.
Using advanced algebraic methods or numerical approaches to solve the polynomial equation \(4x^4 + 4x^2 - 4x + 9 = 0\), we find the roots to be:
[tex]\[ x_1 = -\frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} + \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_2 = \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} - \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_3 = -\frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} - \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
[tex]\[ x_4 = \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} + \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
These expressions involve complex numbers and radicals, indicating the intricate nature of solving such quartic equations exactly.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.