Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright class, let's solve the equation \(\left(2x^2 + 1\right)^2 = 4(x - 2)\) step-by-step:
1. Expand both sides:
On the left-hand side, we have a squared binomial:
[tex]\[ \left(2x^2 + 1\right)^2 = \left(2x^2 + 1\right) \left(2x^2 + 1\right) \][/tex]
Expanding this, we get:
[tex]\[ (2x^2 + 1)(2x^2 + 1) = 4x^4 + 2x^2 + 2x^2 + 1^2 = 4x^4 + 4x^2 + 1 \][/tex]
The right-hand side is:
[tex]\[ 4(x - 2) = 4x - 8 \][/tex]
So the equation now is:
[tex]\[ 4x^4 + 4x^2 + 1 = 4x - 8 \][/tex]
2. Reorganize the equation:
Move all the terms to one side to create a polynomial equal to zero:
[tex]\[ 4x^4 + 4x^2 + 1 - 4x + 8 = 0 \][/tex]
Simplify it:
[tex]\[ 4x^4 + 4x^2 - 4x + 9 = 0 \][/tex]
3. Find the roots of the polynomial:
Solving a polynomial of degree 4 can be complex because it involves finding the roots of a quartic equation. This typically involves methods beyond the quadratic formula and might require numerical methods or sophisticated algebraic techniques.
Using advanced algebraic methods or numerical approaches to solve the polynomial equation \(4x^4 + 4x^2 - 4x + 9 = 0\), we find the roots to be:
[tex]\[ x_1 = -\frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} + \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_2 = \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} - \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_3 = -\frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} - \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
[tex]\[ x_4 = \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} + \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
These expressions involve complex numbers and radicals, indicating the intricate nature of solving such quartic equations exactly.
1. Expand both sides:
On the left-hand side, we have a squared binomial:
[tex]\[ \left(2x^2 + 1\right)^2 = \left(2x^2 + 1\right) \left(2x^2 + 1\right) \][/tex]
Expanding this, we get:
[tex]\[ (2x^2 + 1)(2x^2 + 1) = 4x^4 + 2x^2 + 2x^2 + 1^2 = 4x^4 + 4x^2 + 1 \][/tex]
The right-hand side is:
[tex]\[ 4(x - 2) = 4x - 8 \][/tex]
So the equation now is:
[tex]\[ 4x^4 + 4x^2 + 1 = 4x - 8 \][/tex]
2. Reorganize the equation:
Move all the terms to one side to create a polynomial equal to zero:
[tex]\[ 4x^4 + 4x^2 + 1 - 4x + 8 = 0 \][/tex]
Simplify it:
[tex]\[ 4x^4 + 4x^2 - 4x + 9 = 0 \][/tex]
3. Find the roots of the polynomial:
Solving a polynomial of degree 4 can be complex because it involves finding the roots of a quartic equation. This typically involves methods beyond the quadratic formula and might require numerical methods or sophisticated algebraic techniques.
Using advanced algebraic methods or numerical approaches to solve the polynomial equation \(4x^4 + 4x^2 - 4x + 9 = 0\), we find the roots to be:
[tex]\[ x_1 = -\frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} + \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_2 = \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} - \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} \][/tex]
[tex]\[ x_3 = -\frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} - \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} - \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
[tex]\[ x_4 = \frac{\sqrt{-\frac{4}{3} - 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3} + \frac{2}{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}} - \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}}{2} + \frac{\sqrt{-\frac{2}{3} + \frac{14}{9(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}} + 2(-\frac{133}{432} + \frac{7\sqrt{159}i}{144})^{1/3}}}{2} \][/tex]
These expressions involve complex numbers and radicals, indicating the intricate nature of solving such quartic equations exactly.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.