At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To express \(\ln \frac{81}{125}\) in terms of \(\ln 3\) and \(\ln 5\), follow these steps:
1. Apply the properties of logarithms: Use the property that \(\ln \frac{a}{b} = \ln a - \ln b\).
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 \][/tex]
2. Prime factorize each number:
- \(81\) can be written as \(3^4\).
- \(125\) can be written as \(5^3\).
3. Substitute these factorizations into the logarithms:
[tex]\[ \ln 81 = \ln (3^4) \][/tex]
[tex]\[ \ln 125 = \ln (5^3) \][/tex]
4. Apply the power rule of logarithms: The power rule states that \(\ln (a^b) = b \ln a\).
[tex]\[ \ln (3^4) = 4 \ln 3 \][/tex]
[tex]\[ \ln (5^3) = 3 \ln 5 \][/tex]
5. Combine the results: Substitute these back into the original expression.
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 = 4 \ln 3 - 3 \ln 5 \][/tex]
So, the logarithm \(\ln \frac{81}{125}\) expressed in terms of \(\ln 3\) and \(\ln 5\) is:
[tex]\[ \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \][/tex]
1. Apply the properties of logarithms: Use the property that \(\ln \frac{a}{b} = \ln a - \ln b\).
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 \][/tex]
2. Prime factorize each number:
- \(81\) can be written as \(3^4\).
- \(125\) can be written as \(5^3\).
3. Substitute these factorizations into the logarithms:
[tex]\[ \ln 81 = \ln (3^4) \][/tex]
[tex]\[ \ln 125 = \ln (5^3) \][/tex]
4. Apply the power rule of logarithms: The power rule states that \(\ln (a^b) = b \ln a\).
[tex]\[ \ln (3^4) = 4 \ln 3 \][/tex]
[tex]\[ \ln (5^3) = 3 \ln 5 \][/tex]
5. Combine the results: Substitute these back into the original expression.
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 = 4 \ln 3 - 3 \ln 5 \][/tex]
So, the logarithm \(\ln \frac{81}{125}\) expressed in terms of \(\ln 3\) and \(\ln 5\) is:
[tex]\[ \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.