Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which choices are real numbers, we examine the expression \((-x)^{1/n}\) for each option, where \(x\) is a positive integer and \(n\) is a positive rational number.
For \( (-x)^{1/n} \) to be a real number:
1. If \(n\) is an even number, \((-x)^{1/n}\) is not a real number because the root of a negative number is not real when the root is even.
2. If \(n\) is an odd number, \((-x)^{1/n}\) is a real number because the root of a negative number is real when the root is odd.
Let's evaluate each of the given options:
Choice A: \((-531441)^{1/12}\)
- Here, \(-531441\) is the base.
- The exponent is \( \frac{1}{12} \), which translates to the twelfth root of -531441.
- Since 12 is an even number, \( (-531441)^{1/12} \) is not a real number.
Choice B: \((-131072)^{1/17}\)
- Here, \(-131072\) is the base.
- The exponent is \( \frac{1}{17} \), which translates to the seventeenth root of -131072.
- Since 17 is an odd number, \( (-131072)^{1/17} \) is a real number.
Choice C: \((-1024)^{1/5}\)
- Here, \(-1024\) is the base.
- The exponent is \( \frac{1}{5} \), which translates to the fifth root of -1024.
- Since 5 is an odd number, \( (-1024)^{1/5} \) is a real number.
Choice D: \((-256)^{1/8}\)
- Here, \(-256\) is the base.
- The exponent is \( \frac{1}{8} \), which translates to the eighth root of -256.
- Since 8 is an even number, \( (-256)^{1/8} \) is not a real number.
Based on these evaluations, the real numbers correspond to the following choices:
- B. \( (-131072)^{1/17} \)
- C. \( (-1024)^{1/5} \)
Thus, the choices that are real numbers are: [tex]\(B\)[/tex] and [tex]\(C\)[/tex].
For \( (-x)^{1/n} \) to be a real number:
1. If \(n\) is an even number, \((-x)^{1/n}\) is not a real number because the root of a negative number is not real when the root is even.
2. If \(n\) is an odd number, \((-x)^{1/n}\) is a real number because the root of a negative number is real when the root is odd.
Let's evaluate each of the given options:
Choice A: \((-531441)^{1/12}\)
- Here, \(-531441\) is the base.
- The exponent is \( \frac{1}{12} \), which translates to the twelfth root of -531441.
- Since 12 is an even number, \( (-531441)^{1/12} \) is not a real number.
Choice B: \((-131072)^{1/17}\)
- Here, \(-131072\) is the base.
- The exponent is \( \frac{1}{17} \), which translates to the seventeenth root of -131072.
- Since 17 is an odd number, \( (-131072)^{1/17} \) is a real number.
Choice C: \((-1024)^{1/5}\)
- Here, \(-1024\) is the base.
- The exponent is \( \frac{1}{5} \), which translates to the fifth root of -1024.
- Since 5 is an odd number, \( (-1024)^{1/5} \) is a real number.
Choice D: \((-256)^{1/8}\)
- Here, \(-256\) is the base.
- The exponent is \( \frac{1}{8} \), which translates to the eighth root of -256.
- Since 8 is an even number, \( (-256)^{1/8} \) is not a real number.
Based on these evaluations, the real numbers correspond to the following choices:
- B. \( (-131072)^{1/17} \)
- C. \( (-1024)^{1/5} \)
Thus, the choices that are real numbers are: [tex]\(B\)[/tex] and [tex]\(C\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.