Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the ordered pair \((-3, 5)\) satisfies both inequalities, we need to check it step by step for each inequality.
### Step 1: Check the first inequality
We start with the inequality \( y \leq -x + 1 \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ y \leq -(-3) + 1 \][/tex]
2. Simplify the expression inside the inequality:
[tex]\[ 5 \leq 3 + 1 \][/tex]
3. Perform the addition on the right side:
[tex]\[ 5 \leq 4 \][/tex]
4. Evaluate the inequality:
[tex]\[ 5 \leq 4 \][/tex]
Clearly, \( 5 \leq 4 \) is false.
### Step 2: Check the second inequality
Now, we examine the inequality \( y > x \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ 5 > -3 \][/tex]
2. Evaluate the inequality:
[tex]\[ 5 > -3 \][/tex]
This statement is true.
### Conclusion
The ordered pair \((-3, 5)\) needs to satisfy both inequalities simultaneously. From our evaluations:
- The first inequality \( y \leq -x + 1 \) evaluates to false.
- The second inequality \( y > x \) evaluates to true.
Since both conditions must be met for the pair to be a valid solution and the first condition is false, the ordered pair [tex]\((-3, 5)\)[/tex] does not make both inequalities true.
### Step 1: Check the first inequality
We start with the inequality \( y \leq -x + 1 \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ y \leq -(-3) + 1 \][/tex]
2. Simplify the expression inside the inequality:
[tex]\[ 5 \leq 3 + 1 \][/tex]
3. Perform the addition on the right side:
[tex]\[ 5 \leq 4 \][/tex]
4. Evaluate the inequality:
[tex]\[ 5 \leq 4 \][/tex]
Clearly, \( 5 \leq 4 \) is false.
### Step 2: Check the second inequality
Now, we examine the inequality \( y > x \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ 5 > -3 \][/tex]
2. Evaluate the inequality:
[tex]\[ 5 > -3 \][/tex]
This statement is true.
### Conclusion
The ordered pair \((-3, 5)\) needs to satisfy both inequalities simultaneously. From our evaluations:
- The first inequality \( y \leq -x + 1 \) evaluates to false.
- The second inequality \( y > x \) evaluates to true.
Since both conditions must be met for the pair to be a valid solution and the first condition is false, the ordered pair [tex]\((-3, 5)\)[/tex] does not make both inequalities true.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.