Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether the ordered pair \((-3, 5)\) satisfies both inequalities, we need to check it step by step for each inequality.
### Step 1: Check the first inequality
We start with the inequality \( y \leq -x + 1 \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ y \leq -(-3) + 1 \][/tex]
2. Simplify the expression inside the inequality:
[tex]\[ 5 \leq 3 + 1 \][/tex]
3. Perform the addition on the right side:
[tex]\[ 5 \leq 4 \][/tex]
4. Evaluate the inequality:
[tex]\[ 5 \leq 4 \][/tex]
Clearly, \( 5 \leq 4 \) is false.
### Step 2: Check the second inequality
Now, we examine the inequality \( y > x \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ 5 > -3 \][/tex]
2. Evaluate the inequality:
[tex]\[ 5 > -3 \][/tex]
This statement is true.
### Conclusion
The ordered pair \((-3, 5)\) needs to satisfy both inequalities simultaneously. From our evaluations:
- The first inequality \( y \leq -x + 1 \) evaluates to false.
- The second inequality \( y > x \) evaluates to true.
Since both conditions must be met for the pair to be a valid solution and the first condition is false, the ordered pair [tex]\((-3, 5)\)[/tex] does not make both inequalities true.
### Step 1: Check the first inequality
We start with the inequality \( y \leq -x + 1 \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ y \leq -(-3) + 1 \][/tex]
2. Simplify the expression inside the inequality:
[tex]\[ 5 \leq 3 + 1 \][/tex]
3. Perform the addition on the right side:
[tex]\[ 5 \leq 4 \][/tex]
4. Evaluate the inequality:
[tex]\[ 5 \leq 4 \][/tex]
Clearly, \( 5 \leq 4 \) is false.
### Step 2: Check the second inequality
Now, we examine the inequality \( y > x \).
1. Substitute \( x = -3 \) and \( y = 5 \) into the inequality:
[tex]\[ 5 > -3 \][/tex]
2. Evaluate the inequality:
[tex]\[ 5 > -3 \][/tex]
This statement is true.
### Conclusion
The ordered pair \((-3, 5)\) needs to satisfy both inequalities simultaneously. From our evaluations:
- The first inequality \( y \leq -x + 1 \) evaluates to false.
- The second inequality \( y > x \) evaluates to true.
Since both conditions must be met for the pair to be a valid solution and the first condition is false, the ordered pair [tex]\((-3, 5)\)[/tex] does not make both inequalities true.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.