Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which pairs of expressions are equivalent, let's analyze each pair step-by-step.
### Pair A: \((\sqrt[3]{125})^9\) and \(125^{9 / 3}\)
1. Evaluate \((\sqrt[3]{125})^9\):
- \(\sqrt[3]{125}\) means finding the cube root of 125.
- The cube root of 125 is 5 because \(5^3 = 125\).
- So, \((\sqrt[3]{125})^9 = (5)^9 = 5^9\).
2. Evaluate \(125^{9 / 3}\):
- \(125^{9 / 3} = 125^3\) since \(9 / 3 = 3\).
- \(125^3 = (5^3)^3 = 5^{33} = 5^9\).
Since both expressions simplify to \(5^9\), they are equivalent.
### Pair B: \(12^{2 / 7}\) and \((\sqrt{12})^7\)
1. Evaluate \(12^{2 / 7}\):
- This expression represents 12 raised to the power of \(2 / 7\).
2. Evaluate \((\sqrt{12})^7\):
- \(\sqrt{12}\) means the square root of 12.
- The square root of 12 is \(12^{1 / 2}\).
- So, \((\sqrt{12})^7 = (12^{1 / 2})^7\).
- Using the property of exponents, \((a^b)^c = a^{bc}\), we get \((12^{1 / 2})^7 = 12^{(1 / 2) 7} = 12^{7 / 2}\).
The expressions \(12^{2 / 7}\) and \(12^{7 / 2}\) are not equivalent.
### Pair C: \(4^{1 / 5}\) and \((\sqrt{4})^5\)
1. Evaluate \(4^{1 / 5}\):
- This expression represents 4 raised to the power of \(1 / 5\).
2. Evaluate \((\sqrt{4})^5\):
- \(\sqrt{4}\) means the square root of 4.
- The square root of 4 is 2 because \(2^2 = 4\).
- So, \((\sqrt{4})^5 = (2)^5 = 2^5\).
The expressions \(4^{1 / 5}\) and \(2^5\) are not equivalent.
### Pair D: \(8^{9 / 2}\) and \((\sqrt{8})^9\)
1. Evaluate \(8^{9 / 2}\):
- This expression represents 8 raised to the power of \(9 / 2\).
2. Evaluate \((\sqrt{8})^9\):
- \(\sqrt{8}\) means the square root of 8.
- The square root of 8 is \(8^{1 / 2}\).
- So, \((\sqrt{8})^9 = (8^{1 / 2})^9\).
- Using the property of exponents, \((a^b)^c = a^{bc}\), we get \((8^{1 / 2})^9 = 8^{(1 / 2) * 9} = 8^{9 / 2}\).
Since both expressions simplify to \(8^{9 / 2}\), they are equivalent.
### Conclusion
After analyzing each pair:
- Pair A: \((\sqrt[3]{125})^9\) and \(125^{9 / 3}\) are equivalent.
- Pair B: \(12^{2 / 7}\) and \((\sqrt{12})^7\) are not equivalent.
- Pair C: \(4^{1 / 5}\) and \((\sqrt{4})^5\) are not equivalent.
- Pair D: \(8^{9 / 2}\) and \((\sqrt{8})^9\) are equivalent.
Thus, the pairs of equivalent expressions are A and D.
### Pair A: \((\sqrt[3]{125})^9\) and \(125^{9 / 3}\)
1. Evaluate \((\sqrt[3]{125})^9\):
- \(\sqrt[3]{125}\) means finding the cube root of 125.
- The cube root of 125 is 5 because \(5^3 = 125\).
- So, \((\sqrt[3]{125})^9 = (5)^9 = 5^9\).
2. Evaluate \(125^{9 / 3}\):
- \(125^{9 / 3} = 125^3\) since \(9 / 3 = 3\).
- \(125^3 = (5^3)^3 = 5^{33} = 5^9\).
Since both expressions simplify to \(5^9\), they are equivalent.
### Pair B: \(12^{2 / 7}\) and \((\sqrt{12})^7\)
1. Evaluate \(12^{2 / 7}\):
- This expression represents 12 raised to the power of \(2 / 7\).
2. Evaluate \((\sqrt{12})^7\):
- \(\sqrt{12}\) means the square root of 12.
- The square root of 12 is \(12^{1 / 2}\).
- So, \((\sqrt{12})^7 = (12^{1 / 2})^7\).
- Using the property of exponents, \((a^b)^c = a^{bc}\), we get \((12^{1 / 2})^7 = 12^{(1 / 2) 7} = 12^{7 / 2}\).
The expressions \(12^{2 / 7}\) and \(12^{7 / 2}\) are not equivalent.
### Pair C: \(4^{1 / 5}\) and \((\sqrt{4})^5\)
1. Evaluate \(4^{1 / 5}\):
- This expression represents 4 raised to the power of \(1 / 5\).
2. Evaluate \((\sqrt{4})^5\):
- \(\sqrt{4}\) means the square root of 4.
- The square root of 4 is 2 because \(2^2 = 4\).
- So, \((\sqrt{4})^5 = (2)^5 = 2^5\).
The expressions \(4^{1 / 5}\) and \(2^5\) are not equivalent.
### Pair D: \(8^{9 / 2}\) and \((\sqrt{8})^9\)
1. Evaluate \(8^{9 / 2}\):
- This expression represents 8 raised to the power of \(9 / 2\).
2. Evaluate \((\sqrt{8})^9\):
- \(\sqrt{8}\) means the square root of 8.
- The square root of 8 is \(8^{1 / 2}\).
- So, \((\sqrt{8})^9 = (8^{1 / 2})^9\).
- Using the property of exponents, \((a^b)^c = a^{bc}\), we get \((8^{1 / 2})^9 = 8^{(1 / 2) * 9} = 8^{9 / 2}\).
Since both expressions simplify to \(8^{9 / 2}\), they are equivalent.
### Conclusion
After analyzing each pair:
- Pair A: \((\sqrt[3]{125})^9\) and \(125^{9 / 3}\) are equivalent.
- Pair B: \(12^{2 / 7}\) and \((\sqrt{12})^7\) are not equivalent.
- Pair C: \(4^{1 / 5}\) and \((\sqrt{4})^5\) are not equivalent.
- Pair D: \(8^{9 / 2}\) and \((\sqrt{8})^9\) are equivalent.
Thus, the pairs of equivalent expressions are A and D.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.