Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the inverse of the function \( y = x^2 + 4x + 4 \), we will follow a structured approach.
### Step-by-Step Solution
1. Express the function in a more manageable form:
The given function is \( y = x^2 + 4x + 4 \). We notice that this can be rewritten by completing the square:
[tex]\[ y = (x + 2)^2 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse function, we need to express \( x \) in terms of \( y \). We start by swapping \( x \) and \( y \):
[tex]\[ x = (y + 2)^2 \][/tex]
3. Solve for \( y \):
Next, we need to isolate \( y \). We do this by taking the square root of both sides:
[tex]\[ \sqrt{x} = y + 2 \][/tex]
Note that we should consider both the positive and negative square roots, but since we usually assume the principal (positive) square root unless otherwise specified, we will proceed with:
[tex]\[ \sqrt{x} = y + 2 \][/tex]
4. Isolate \( y \):
Finally, we solve for \( y \) by subtracting 2 from both sides:
[tex]\[ y = \sqrt{x} - 2 \][/tex]
### Conclusion
The inverse of the function \( y = x^2 + 4x + 4 \) is:
[tex]\[ y = \sqrt{x} - 2 \][/tex]
This is the step-by-step process to find the inverse of the given function.
### Step-by-Step Solution
1. Express the function in a more manageable form:
The given function is \( y = x^2 + 4x + 4 \). We notice that this can be rewritten by completing the square:
[tex]\[ y = (x + 2)^2 \][/tex]
2. Swap \( x \) and \( y \):
To find the inverse function, we need to express \( x \) in terms of \( y \). We start by swapping \( x \) and \( y \):
[tex]\[ x = (y + 2)^2 \][/tex]
3. Solve for \( y \):
Next, we need to isolate \( y \). We do this by taking the square root of both sides:
[tex]\[ \sqrt{x} = y + 2 \][/tex]
Note that we should consider both the positive and negative square roots, but since we usually assume the principal (positive) square root unless otherwise specified, we will proceed with:
[tex]\[ \sqrt{x} = y + 2 \][/tex]
4. Isolate \( y \):
Finally, we solve for \( y \) by subtracting 2 from both sides:
[tex]\[ y = \sqrt{x} - 2 \][/tex]
### Conclusion
The inverse of the function \( y = x^2 + 4x + 4 \) is:
[tex]\[ y = \sqrt{x} - 2 \][/tex]
This is the step-by-step process to find the inverse of the given function.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.